




Kapitel 7
Das Standardmodell

Christoph Berger

Einführung
Das ganze Buch behandelt im Grunde genommen das Standardmodell
der Teilchenphysik. In einem Kapitel, das diesen Namen als Überschrift
trägt, befassen wir uns noch einmal mit einigen wichtigen und teilweise
neuen Aspekten des Modells, dessen physikalischer Inhalt sich in weni-
gen Sätzen formulieren lässt: Die Materie wird aus je drei Familien von
Leptonen (

νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
(7.1)

und Quarks (
u

d

)
,

(
c

s

)
,

(
t

b

)
(7.2)

aufgebaut. Wie bereits im letzten Abschnitt besprochen, sind Leptonen
und Quarks Basiszustände der Gruppe SU2L ⊗ U1, deren Erzeugende
der schwache Isospin und die schwache Hyperladung sind. Die Quark-
Eigenzustände zu SU2L mit I3,L = −1/2 gehen aus einer verallgemei-
nerten Cabibbo-Rotation der d -, s- und b-Quarks hervor (Abschn. ??).
Die Quarks tragen zusätzlich Farbladungen, sie sind Eigenzustände der
Gruppe SU 3C. Man bezeichnet das Standardmodell daher oft als das
SU3C ⊗ SU2L ⊗ U1-Modell.
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Wechselwirkungen zwischen den Konstituenten sind vom Strom-Feld-
Typ. Die zwischen den einzelnen Mitgliedern der Gruppe SU2L ⊗ U1
ausgetauschten Kraftquanten der elektroschwachen Wechselwirkung
sind das Photon und die W +-, W−- und Z 0-Bosonen. Die starke Wech-
selwirkung beruht auf dem Austausch von Gluonen zwischen den Ba-
siszuständen der Gruppe SU 3C.

Im weiteren Verlauf der Diskussion werden wir genauer als im letzten
Abschnitt begründen, dass es noch ein weiteres fundamentales Teilchen,
das skalare Higgs-Boson, geben muss. Mit ihm werden wir uns in Ab-
schn. ?? ausführlich beschäftigen.

7.1 Die Neutrino-Elektron-Streuung

Als erster Anwendung der gerade entwickelten Feynman-Regeln wenden wir
uns der Berechnung des Wirkungsquerschnitts der elastischen νµ e-Streuung
(Abb. 6.20) unter Austausch eines Z 0-Bosons zu. Wir beginnen mit den Elek-
tronen negativer Helizität. In der Hochenergienäherung erhalten wir für das
Matrixelement den Ausdruck

Tfi(νµeL → νµeL)

=
−g2

cos2ΘW

1

q2 −M2
Z

cνcLūL(p′)γνuL(p)ūL(k′)γνuL(k) .
(7.3)

Zur Vereinfachung der Notation wurden die Abkürzungen cL, e = cL und
cL, ν = cν für die Kopplungen des Elektrons und des Neutrinos gewählt. Wir
benutzen wie üblich die Näherung |q2|�M 2

Z und führen die Abkürzung

% =
M2
W

M2
Z cos2ΘW

(7.4)

ein. Damit gelangt man – analog zum Vorgehen in Abschn. 6.1 – zu

Tfi(νµeL) = 8
√

2cνcLGF%s . (7.5)

Für die Streuung an rechtshändigen Elektronen gilt andererseits

Tfi(νµeR) = −8
√

2cνcRGF%u . (7.6)

Daraus lässt sich ohne weitere Schwierigkeiten der differentielle Wirkungs-
querschnitt im Schwerpunktssystem nach den üblichen Vorschriften zu
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dσ

dΩ
(νµe→ νµe) =

1

π2
%2G2

Fs0c
2
ν

(
c2L +

c2R(1 + cosΘ)2

4

)
(7.7)

ableiten, woraus nach Integration über den Streuwinkel Θ

σ(νµe→ νµe) =
4

π
%2G2

Fs0c
2
ν

(
c2L +

1

3
c2R

)
(7.8)

folgt.
Die letzte Formel können wir noch im Laborsystem für die Streuung von

Neutrinos der Energie E an ruhenden Elektronen der Masse m auswerten,
wobei wir gleichzeitig die Werte des GSW-Modells für cL, cR und cν einset-
zen,

σ(νµe→ νµe) =
1

π
%2G2

F2mE

[(
sin2ΘW −

1

2

)2

+
1

3
sin4ΘW

]
. (7.9)

Die Rechnung für die Streuung von Antineutrinos enthält nichts Neues.
Ihr Resultat lautet

σ(ν̄µe→ ν̄µe) =
4

π
%2G2

Fs0c
2
ν

(
1

3
c2L + c2R

)
. (7.10)

Im Prinzip lassen sich aus der Messung der Wirkungsquerschnitte für elasti-
sche νµ- bzw. ν̄µ-Streuung die Parameter % und sin2ΘW der Theorie bestim-
men. Die Experimente sind sehr gut mit

sin2ΘW = 0,230 (7.11)

und

% = 1 (7.12)

verträglich. Der %-Parameter misst das Verhältnis der neutralen zur gela-
denen schwachen Wechselwirkung. Die gute Beschreibung der Experimente
durch %=1 ist sehr wichtig, da diese Beziehung im GSW-Modell vorhergesagt
wird. Um das zu beweisen, muss man aber wiederum den Eichfeldcharakter
der Theorie und die spontane Symmetriebrechung studieren. Da dies weit
über den Rahmen dieses Buches hinausgeht, muss ich den Leser auf die Lite-
ratur verweisen [Qui13, Pes95]. Einige Anmerkungen finden sich im Kasten
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in Abschn. ?? Es ist üblich, die Beziehung %=1 in Form einer neuen Defini-
tionsgleichung

sin2ΘW = 1− M2
W

M2
Z

(7.13)

für den Weinberg-Winkel auszudrücken.
Aus der ersten Gleichung (6.146) und (6.5) gewinnen wir nun eine Vor-

hersage für M W aus der Fermi-Konstanten, der Feinstrukturkonstanten und
dem Weinberg-Winkel,

M2
W =

απ√
2GF sin2ΘW

. (7.14)

Hierbei ist es sehr praktisch, die Abkürzung

M2
F =

απ√
2GF

(7.15)

einzuführen, in der nur präzise gemessene Naturkonstanten auftauchen. Nu-
merisch gilt

MF = 37,2804 GeV , (7.16)

woraus sich mit sin2ΘW =0,23 eine W-Masse von 77,7GeV und wegen (7.13)
eine Z 0-Masse von 88,6GeV ergibt.

Die experimentellen Werte der W - und Z 0-Massen

MW = 80,385± 0,015 GeV

MZ = 91,1876± 0,0021 GeV
(7.17)

sind um viele Standardabweichungen von den obigen Vorhersagen entfernt.
Es gibt keinen Wert des Weinbergwinkels, mit dem man die experimentellen
Massenwerte innerhalb der Fehler reproduzieren kann. Gerade dies wird aber
zu einem entscheidenden Triumph der Theorie, denn die aus (7.13) und (7.14)
berechneten Massenwerte sind Resultate der Bornschen Näherung, die durch
die elektroschwachen Strahlungskorrekturen modifiziert werden. Die Abb. 7.1
zeigt die einfachsten Diagramme, die auf dem Ein-Schleifen-Niveau zur Mo-
difikation der Boson-Propagatoren beitragen. Häufig wird das Schema der
sehr komplizierten Berechnungen der Strahlungskorrektur so angelegt, dass
(7.14) zu
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M2
W =

M2
F

sin2ΘW(1−∆r)
(7.18)

abgeändert wird, während (7.13) erhalten bleibt. Das ist das sog. on shell -
Schema. Die führenden Beiträge zu ∆r sind durch

∆r = ∆r0 −
∆%t

tan2ΘW
(7.19)

gegeben. Hierin beschreibt

∆r0 = 1− α

α(M2
Z)

(7.20)

die Änderung der Feinstrukturkonstanten, die durch die q2-Abhängigkeit
der elektromagnetischen Kopplung hervorgerufen wird. Sie wurde in Ab-
schn. 3.1.4 zu 0,07 abgeschätzt, eine genauere Rechnung ergibt einen Wert
von 0,06635 mit einer Unsicherheit von 10 in den letzten beiden Stellen. Der
Anteil des top-Quarks in den Schleifen der Abb. 7.1 wird durch

∆%t =
3GFm

2
t

8
√

2π2
(7.21)

bestimmt. Der Einfluss aller anderen Fermionen ist infolge ihrer kleinen
Masse vernachlässigbar. Numerisch gilt ∆%t = 0,0096(mt/175)2, worin die
top-Masse in GeV einzusetzen ist. Damit erhalten wir ∆r =0,0335, wobei
mt =173,4GeV benutzt wurde, wie es durch die direkten Messungen der top-
Masse nahegelegt wird.

Die Z 0-Masse ist besonders genau gemessen worden. Neben den ebenfalls
sehr präzise bekannten Werten von α und GF ist sie der dritte fundamentale
Parameter der elektroschwachen Theorie. Da auch die W -Masse nur noch
einen Fehler von etwa 0,02% hat, liefert die Anwendung von (7.13)

sin2ΘW = 0,2229± 0,0003 . (7.22)

Einsetzen in (7.18) gibt unter Benutzung des gerade berechneten Wertes von
∆r eine W -Masse von 80,32GeV mit einem Fehler, der hier allein auf Grund
der Unsicherheit in sin2ΘW etwa 0,1GeV beträgt. Die Übereinstimmung der
Parameter der elektroschwachen Theorie mit den experimentellen Werten
wird verbessert, wenn in den Strahlungskorrekturen auch der Austausch von
Higgs-Bosonen berücksichtigt wird. Abbildung 7.2 zeigt einen der vielen bei-
tragenden Graphen. Die Korrekturen hängen logarithmisch von MH/M W
ab. Das von der PDG zitierte Ergebnis M W =80,381± 0,014GeV der Fits
stimmt hervorragend mit (7.17) überein. Die Diskussion zeigt, wie eng in
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Abb. 7.1 Die einfachsten elektroschwachen Strahlungskorrekturen. (a) Fermionen-
Schleife im Photon-Propagator, (b) t, b-Quark-Schleife im W -Boson-Propagator, (c) t-
und b-Quark-Schleife im Propagator des Z 0-Bosons

H

Z
0

Abb. 7.2 Die Modifikation des Z 0-Propagators durch Higgs-Strahlung

diesem Bereich der Teilchenphysik präzise Messungen und komplexe theore-
tische Rechnungen [Hol90] miteinander verwoben sind.

7.2 Die e− e+-Vernichtung
in Fermion-Antifermion-Paare

Dieser Prozess kann ohne Zweifel als die zentrale Reaktion der elektroschwa-
chen Wechselwirkung angesehen werden. Zu ihrer Erforschung wurde eigens
ein großer Elektron-Positron-Speicherring (LEP am CERN in Genf) gebaut,
an dem über 1200 Physiker an vier Experimenten arbeiteten.
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Abb. 7.3 Feynman-Graphen der Elektron-Positron-Vernichtung in Fermion-Antifermion-
Paare. (a) Photon-Austausch und (b) Austausch eines Z 0-Bosons

7.2.1 Die Bornsche Näherung

Wir berechnen den Wirkungsquerschnitt zunächst in der Bornschen Nä-
herung. Die benötigten Feynman-Graphen sind besonders einfach. Solange
auslaufende Elektron-Positron-Paare ausgeschlossen sind, müssen nur Aus-
tauschteilchen im s-Kanal berücksichtigt werden. Zusätzlich zum Photonaus-
tausch der Abb. 3.5 kommt jetzt noch Z 0-Austausch (Abb. 7.3) hinzu. Wir
beginnen mit der Streuamplitude für die Reaktion

e−L + e+
R → fL + f̄R , (7.23)

worin das Symbol f ein Lepton oder ein Quark bedeuten kann.1 Aus den
Feynman-Regeln berechnet man in der Hochenergienäherung sofort

Tfi = −v̄R(k)γµuL(p)

(
−e2Qf
q2

+
g2

cos2ΘW

cL,ecL,f
q2 −M2

Z

)
· ūL(p′)γµvR(k′) ,

(7.24)

wobei die Symbole der Vierervektoren in Abb. 7.3 erläutert sind. Die Kopp-
lungen cL, e und cL, f an die Elektronen bzw. an beliebige Fermionen sind in
(6.154) definiert. Wir vereinfachen die Schreibweise wie im letzten Abschnitt,
indem wir für die Elektronen cL, e = cL und cR, e = cR ansetzen.

Der Propagator für das Z 0-Boson muss noch modifiziert werden, um den
Pol der Streuamplitude bei s =M 2

Z zu vermeiden. Für ein instabiles Teilchen

1 Wie immer bezeichnen die Indizes L, R an den Teilchen und Spinoren die Helizitäten.
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der Masse M Z und der totalen Zerfallsbreite ΓZ ist nach den Regeln der
Quantenfeldtheorie der Faktor 1/(q2−M 2

Z ) im Propagator durch

1

q2 −M2
Z + iMZΓZ

(7.25)

zu ersetzen. Für die Elektron-Positron-Vernichtung gilt

q2 = s , (7.26)

und für s ≈M 2
Z wird der Wirkungsquerschnitt praktisch vollkommen durch

den Z 0-Austausch bestimmt. Insbesondere hat das Betragsquadrat des Pro-
pagators die Form der relativistischen Breit-Wigner-Funktion (2.277)

frBW =
1

(s−M2
Z)2 +M2

ZΓ
2
Z

. (7.27)

Wir bleiben weiter in der Hochenergienäherung und können daher der Tabel-
le 3.1

−v̄R(k)γµuL(p)ūL(p′)γµvR(k′) = s(1 + cosΘ) (7.28)

entnehmen. Unter Berücksichtigung von (7.15) gilt dann

Tfi(e
−
L e

+
R → fLf̄R) = −4πα(1 + cosΘ)(Qf −A0cLcL,f ) , (7.29)

worin die Abkürzung

A0 =
sM2

Z

M2
F(s−M2

Z + iMZΓZ)
(7.30)

benutzt wurde. Die Zusammenfassung der elektromagnetischen und schwa-
chen Wechselwirkung in diesem Prozess ist klar zu sehen. Bei niedrigen
Energien s/M 2

F� 1 überwiegt die elektromagnetische Wechselwirkung, für
s ≈M 2

Z die schwacheWechselwirkung, während oberhalb des Z 0-Pols, s�M 2
Z ,

beide Amplituden die gleiche Größenordnung haben, der Ausdruck „schwache
Wechselwirkung“ ist dann bedeutungslos geworden.

Aus der Amplitude T f i lässt sich nun ohne weiteres der Wirkungsquer-
schnitt
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Tabelle 7.1 Die Amplituden der Elektron-Positron-Vernichtung in Fermion-Antifermion-
Paare in der elektroschwachen Wechselwirkung

Prozess T f i/4π α
e−L e

+
R → fLf̄R (1+ cosΘ)(−Qf +A0 cL cL, f)

e−L e
+
R → fRf̄L (1− cosΘ)(−Qf +A0 cL cR, f)

e−Re
+
L → fLf̄R (1− cosΘ)(−Qf +A0 cR cL, f)

e−Re
+
L → fRf̄L (1+ cosΘ)(−Qf +A0 cR cR, f)

dσ

dΩ
(e−L e

+
R → fLf̄R) =

α2NC

4s
(1 + cosΘ)2

·
(
Q2
f − 2

M2
Z

M2
F

s(s−M2
Z)frBWQfcLcL,f

+
M4
Z

M4
F

s2frBWc
2
Lc

2
L,f

) (7.31)

berechnen. N C ist ein Farbfaktor mit N C =3 für Quarks und N C =1 für Lep-
tonen im Endzustand. Auf die gleiche Weise kann der Wirkungsquerschnitt
für die anderen drei möglichen Helizitätskombinationen aus der Tabelle 7.1
entnommen werden. Mit ihrer Hilfe kann man nun nicht nur den spingemit-
telten Querschnitt, sondern auch andere interessante Messgrößen, wie z. B.
die Asymmetrie zwischen Vorwärts- und Rückwärtsstreuung oder die Polari-
sation der auslaufenden Fermionen, bestimmen.

Wir beginnen mit der Berechnung des spingemittelten Wirkungsquer-
schnitts. Dazu werden zunächst die Betragsquadrate der Amplituden der
Tabelle 7.1 addiert. Das über die Spins der einlaufenden Teilchen gemittelte
Resultat (der vielleicht etwas mühsamen) Rechnung lautet:

∑
|Tfi|2 = 32π2α2

[(
u2

s2
+
t2

s2

)
G1 +

(
u2

s2
− t2

s2

)
G2

]
, (7.32)

worin die Funktionen G1 und G2 durch

G1 = Q2
f − 2QfvvfBs(s−M2

Z)frBW + (v2 + a2)(v2
f + a2

f )B2s2frBW (7.33)

und

G2 = −2QfaafBs(s−M2
Z)frBW + 4vavfafB

2s2frBW (7.34)

definiert sind. Hierin wurde die Abkürzung
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B =
M2
Z

4M2
F

(7.35)

mit M F aus (7.15) benutzt. Außerdem wurden die links- und rechtshändigen
Kopplungen durch die in der Literatur häufiger vorkommenden Vektor- und
Axialvektor-Kopplungen (6.155) ersetzt. Zusätzlich wurden die Abkürzungen
cV, e = v, cA, e = a und cV, f = v f, cA, f = af eingeführt. Schließlich wurden die
Winkelfunktionen durch die Invarianten s, t, u ausgedrückt, was sich bei der
Behandlung der Elektron-Proton-Streuung als sehr nützlich erweisen wird.
Als Standardformel für den Wirkungsquerschnitt leiten wir nun aus (7.32)
die Beziehung

dσ

dΩ
(e−e+ → ff̄) =

α2NC

4s

[
(1 + cos2Θ)G1 + 2 cosΘG2

]
(7.36)

ab.
Der im Cosinus des Streuwinkels lineare Term enthält die paritätsverlet-

zenden Anteile. Da sin2ΘW nahe bei 0,25 liegt, ist dieser Term für Endzu-
stände mit µ- oder τ -Paaren ziemlich klein. Zum totalen Querschnitt trägt
er auf keinen Fall bei:

σ(e−e+ → ff̄) =
4πα2NC

3s
G1 . (7.37)

Das Verhältnis

R =
σ(e−e+ → ff̄)

σQED(e−e+ → µ−µ+)
(7.38)

wird durch den starken Z 0-Pol dominiert. Der Einfluss des Z 0 lässt sich aber
auch außerhalb der Resonanz durch die Interferenz des Z 0-Austausches mit
dem Photonaustausch nachweisen. In der Umgebung des Z 0-Pols gilt in sehr
guter Näherung

σ(e−e+ → ff̄) =
4πα2NC

3
B2sfrBW(v2 + a2)(v2

f + a2
f ) . (7.39)

Dieses Ergebnis vergleichen wir mit der allgemeinen Form einer Resonanz-
kurve in der Elektron-Positron-Vernichtung (2.278)
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σ = 12πs
Γ ff̄Z Γ eēZ
M2
Z

frBW (7.40)

und leiten daraus den Ausdruck

Γ ff̄Z =
NCGFM

3
Z

6
√

2π
(v2
f + a2

f ) (7.41)

für die Zerfallsbreite des Z 0 in Fermion-Antifermion-Paare ab. Die benötig-
ten Kopplungen sind in Tabelle 7.2 für die erste Generation von Teilchen
(d. h. die jeweils erste Familie von Leptonen und von Quarks) angegeben, für
jede weitere Generation gelten natürlich die entsprechenden Formeln. In der
Tabelle wurde die Abkürzung

xW = sin2ΘW (7.42)

benutzt. Numerisch ergibt sich mit dem Wert von xW =0,23

Γ νν̄Z = 0,166 GeV , (7.43)

bzw.

Γ eēZ = 0,083 GeV . (7.44)

Das Z 0-Boson ist leichter als das top-Quark und kann daher nicht in t̄t zerfal-
len. In unserer Näherung erhalten wir deshalb bei Berücksichtigung der drei
Leptonfamilien und der u-, d -, s-, c-, b-Quarks

ΓZ = 2,43 GeV (7.45)

für die totale Zerfallsbreite. Wie wir gerade gelernt haben, trägt jede Neu-
trinoart 166MeV hierzu bei. Unter der plausiblen Annahme, dass auch die
Neutrinos weiterer Generationen eine geringe Masse haben, lässt eine Mes-
sung der Z 0-Lebensdauer also die Bestimmung der Zahl elementarer Fermion-
Generationen zu. In der Praxis geschieht dies durch Ausmessen der Anre-
gungskurve der Resonanz (Abb. 7.4), wobei es sich als vorteilhaft erweist,
dass nicht nur die Halbwertsbreite, sondern auch die Höhe der Kurve durch
ΓZ bestimmt wird. Die Messungen am CERN und am SLAC haben die Über-
einstimmung mit dem Standardmodell eindrucksvoll nachgewiesen und somit
die Generationenzahl auf drei festgelegt. Dies wird sehr anschaulich durch
die in Abb. 7.4 eingezeichneten Vorhersagen für zwei, drei und vier Gene-
rationen von Neutrinos belegt. Der aus den Messungen bestimmte Wert von
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Tabelle 7.2 Die Kopplungen des Z 0 an Fermion-Antifermion-Paare

v2
f + a2

f
νν̄ 1/2

e− e+ 1/2− 2 xW +4 x2
W

uū 1/2− (4/3) xW +(16/9) x2
W

dd̄ 1/2− (2/3) xW +(4/9) x2
W

Abb. 7.4 Die Z 0-Resonanz in der Elektron-Positron-Paarvernichtung in Hadronen. Die
eingezeichneten Kurven entsprechen der Vorhersage des Standardmodells für zwei, drei und
vier Generationen von Fermionen

ΓZ =2,4952± 0,0023GeV stimmt ausgezeichnet mit dem durch elektroschwa-
che Strahlungskorrekturen verbesserten Ergebnis des Standardmodells über-
ein.
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Die in der Abb. 7.4 zu sehende Gestalt der Kurve bedarf noch eines Kom-
mentars. Die eigentlich symmetrische Form der relativistischen Breit-Wigner-
Kurve wird durch die Bremsstrahlung der einlaufenden Elektronen und Po-
sitronen aufgehoben. Durch diese wird nämlich die effektive Schwerpunkts-
energie reduziert. Zu den Messungen bei

√
s > MZ tragen daher auch viele

Ereignisse bei, die erst nach Abstrahlung von Photonen auf dem Pol der Re-
sonanz liegen und daher einen besonders hohen Wirkungsquerschnitt haben.
Dies führt zu der beobachteten asymmetrischen Kurvenform. Die theoreti-
sche Berechnung lehnt sich an das in Abschn. 3.3.2 vorgestellte Verfahren
an.

Die Kopplungen v f und af sind durch Auswahl der Endzustände einer
experimentellen Bestimmung zugänglich. Natürlich empfiehlt es sich, diese
Konstanten über die durch (7.36) festgelegte Winkelverteilung der Fermionen
zu messen, da man auf diese Weise die vielen Schwierigkeiten einer absoluten
Messung des Wirkungsquerschnitts umgeht. Besonders einsichtig lässt sich
das Ergebnis durch die sog. Vorwärts-Rückwärts-Asymmetrie

AFB =
V −R
V +R

(7.46)

ausdrücken. Hierin ist V das Integral der Winkelverteilung zwischen 0◦ und
90◦ und R das entsprechende Integral zwischen 90◦ und 180◦. Im Bereich der
Z 0-Resonanz (Z 0-Pol) folgt aus (7.33) und (7.34) das Ergebnis

AFB = 3
va

v2 + a2

vfaf
v2
f + a2

f

, (7.47)

das nur noch von den Kopplungen abhängt. Mit der Definition (7.46) lässt
sich die Winkelverteilung durch

dσ

dΩ
(e−e+ → ff̄) ∼ 1 + cos2Θ +

8

3
AFB cosΘ (7.48)

ausdrücken. Mit Hilfe einer Anpassungsrechnung an die Winkelverteilung
kann man also die Asymmetrie bzw. die schwachen Kopplungen der Fermio-
nen bestimmen. Historisch besonders bedeutsam war die Messung des schwa-
chen Isospins des b-Quarks. Die Untersuchung der Winkelverteilung von bb̄-
Paaren (Abb. 7.5) am Speicherring LEP im CERN ergab I 3,L(b)=−1/2, das
b-Quark musste also einen Partner mit I 3,L =+1/2, das top-Quark haben.

Die experimentelle Aufgabe besteht bei solchen Experimenten v. a. dar-
in, bb̄-Endzustände zu erkennen. Dazu werden z. B. die in Abschn. 1.5.1 be-
handelten Vertex-Detektoren eingesetzt, mit deren Hilfe sich zerfallende B -
Mesonen identifizieren lassen. Eine alternative Möglichkeit besteht darin, nur
solche hadronische Ereignisse auszuwählen, die ein µ− µ+-Paar enthalten. Sie
entstehen durch semileptonischen Zerfall des Quarks und des Antiquarks bzw.
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Abb. 7.5 Die Winkelverteilung von sog. bb̄-Zerfällen der Z 0-Resonanz. Als Signatur wur-
den Ereignisse mit zwei Leptonen mit hohem Transversalimpuls im Endzustand gewählt.
Die beobachtete Asymmetrie muss u. a. noch aufgrund der Effekte von flavor -Oszillationen
korrigiert werden

ihrer zugehörigen Mesonen. Nur die Lebensdauer von Mesonen mit C 6= 0
oder B 6= 0 ist so klein, dass die Mesonen innerhalb des Detektorvolumens
zerfallen. Das Myonspektrum aus b-Zerfällen ist aber deutlich härter als aus
c-Zerfällen, weil die semileptonischen Zerfälle der schweren Quarks kinema-
tisch dem β-Zerfall des Myons entsprechen (Abschn. 6.1.2). Damit bekommt
man ein Kriterium zur Auswahl von bb̄-Ereignissen an die Hand, obwohl na-
türlich die Details wie immer komplizierter sind, als es diese Argumentation
erscheinen lassen mag.

7.2.2 Strahlungskorrekturen

Die Modifikation des Wirkungsquerschnitts durch die Beiträge der Feynman-
Graphen höherer Ordnung bezeichnen wir – dem Sprachgebrauch der QED
folgend – als Strahlungskorrekturen. Am wichtigsten sind die schon im letzten
Abschnitt eingeführten Schleifen-Diagramme der Abb. 7.1. Durch die Rech-
nungen höherer Ordnung wird die Formel (7.36) für den Wirkungsquerschnitt
an verschiedenen Stellen geändert, wobei die genaue Form dieser Änderun-
gen vom verwendeten Rechenschema (Renormierungsschema) abhängt. Für
die Einzelheiten muss ich den Leser auf die Literatur verweisen [PDG12,
Duc99].

Am einfachsten lässt sich das Ergebnis der Rechnungen höherer Ordnung
für die Vorwärts-Rückwärts-Asymmetrie auf der Z 0-Resonanz diskutieren,
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denn in (7.47) werden nur die Kopplungen durch die sog. effektiven Kopp-
lungen ersetzt, die ihrerseits durch den effektiven Weinberg-Winkel bestimmt
werden. Die effektiven Werte kennzeichnen wir durch Überstreichung, es gilt
also z. B.

v̄f =
√
%f (If3,L − 2Qf sin2ΘW) (7.49)

āf =
√
%fI

f
3,L (7.50)

mit den entsprechenden Ausdrücken für v und a. Die Vorwärts-Rückwärts-
Asymmetrie hängt nicht von den Normierungen √%,√%f ab, durch ihre Mes-
sung kann also der effektive Weinberg-Winkel direkt bestimmt werden. Das
Ergebnis für sin2ΘW aus einer Messung der Asymmetrie kann in erster Nä-
herung mit der Beziehung

sin2ΘW = sin2ΘW

(
1 +

∆%t
tan2ΘW

)
(7.51)

(mit ∆%t aus (7.21) in den Weinberg-Winkel des on shell -Schemas umgerech-
net werden. Der effektive Weinberg-Winkel ist also etwa 3% größer als der
Winkel des on shell -Schemas.

Unsere gesamte bisherige Diskussion ging von der stillschweigenden Vor-
aussetzung aus, dass die Korrekturen höherer Ordnung zu endlichen Aus-
drücken ohne Benutzung neuer Parameter führen, d. h. dass die elektroschwa-
che Theorie also wie die QED renormierbar ist. In der Tat war der Beweis der
Renormierbarkeit des GSW-Modells einer der wesentlichen Schritte auf dem
Weg zu einer vereinheitlichten Theorie der elektromagnetischen und schwa-
chen Wechselwirkung.2 Ohne diese Renormierbarkeit hätte der Ansatz von
Glashow, Salam und Weinberg nur die Rolle einer Art effektiven Beschrei-
bung der Experimente übernehmen können, ähnlich der Fermi-Theorie des
β-Zerfalls. Die Tatsache, dass die Präzisionsmessungen der Elektron-Positron-
Vernichtung im Bereich der Z 0-Resonanz am CERN und im SLAC alle Ab-
weichungen von der Bornschen Näherung als Folge der Strahlungskorrekturen
bewiesen haben, ist daher von fundamentaler Bedeutung.

Der dominante Parameter in der Korrektur (7.21) ist die Masse des top-
Quarks. Ihr Wert wurde aus den Präzisionsmessungen der elektroschwachen
Observablen zu etwa 170GeV vorhergesagt und es ist beeindruckend, wie gut
nach der Entdeckung des top-Quarks die direkte Messung (mt =173,5± 1,0GeV)
und die indirekte Bestimmung aus den elektroschwachen Korrekturen (mit
einem identischen Resultat) übereinstimmen. Was hierbei experimentell er-
reicht wurde, wird klar, wenn man z. B. den relativen Fehler von 0,2% für

2 Die beiden niederländischen Theoretiker Gerardus t’Hooft (geb. 1946) und Martinus J.G.
Veltman (geb. 1931) erhielten für diese Leistung den Physik-Nobelpreis 1999.
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sin2ΘW oder 2 · 10−5 für die Z 0-Masse betrachtet. Um diesen Massenwert
mit einer solchen Genauigkeit zu bestimmen, muss vor allem die Strahlener-
gie des Speicherrings LEP am CERN präzise bekannt sein. Da sie direkt vom
Umfang des Rings abhängt, mussten fremdartig anmutende Korrekturen wie
z. B. der Einfluss des Füllstandes des Genfer Sees oder Gezeiteneffekte auf-
grund der Position des Mondes berücksichtigt werden.

Übungen

7.1 Berechnen Sie das Verhältnis R der Beziehung (7.38) für die ūu-
Erzeugung bei Schwerpunktsenergien zwischen 30 und 150GeV.

7.2 Berechnen Sie den totalen Wirkungsquerschnitt der e− e+-
Annihilation in Hadronen im Bereich der Z 0-Resonanz und verglei-
chen Sie das Ergebnis mit der durchgezogenen Linie der Abb. 7.4. Die
Unterschiede zeigen den großen Einfluss der Strahlungskorrekturen.

7.3 Berechnen Sie die Polarisation der in der Elektron-Positron-
Annihilation erzeugten τ -Leptonen bei Schwerpunktsenergien im Be-
reich der Z 0-Resonanz.


