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Von der schwachen zur
elektroschwachen Wechselwirkung

Christoph Berger

Einführung
In den vorangegangenen Kap. 3 und 4 haben wir uns ausführlich mit
der elektromagnetischen und der starken Wechselwirkung beschäftigt,
wobei in Kap. 5 dargelegt wurde, dass in Prozessen mit Quarks und
Hadronen beide Kräfte zusammen behandelt werden müssen. Nun wen-
den wir uns in Abschn. 6.1 der schwachen Wechselwirkung zu, deren
Gesetze ebenfalls am klarsten in rein leptonischen Prozessen formuliert
werden können. Bei der Erweiterung auf Quarks und Hadronen (Ab-
schn. ??) wird erneut deutlich, wie wichtig ein quantitatives Verständ-
nis der starken Kraft ist. Im darauf folgenden Abschnitt behandeln wir
die neutralen Ströme und die Zusammenfassung der elektromagneti-
schen und schwachen Wechselwirkung im Modell von Glashow, Salam
und Weinberg (GSW-Modell).

6.1 Schwache Wechselwirkung von Leptonen

Bereits im ersten Kapitel des Buches wurde betont, dass die schwache Wech-
selwirkung – ähnlich wie die elektromagnetische Wechselwirkung – durch
Austausch von Feldquanten beschrieben wird. Wir wollen dieses Thema nun
ausführlicher behandeln und uns dabei zunächst auf Prozesse beschränken,
die durch Austausch der geladenen W -Bosonen behandelt werden können.
Sie werden auch Reaktionen geladener Ströme genannt (Abkürzung CC für
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Abb. 6.1 Feynman-Diagramm der Reaktion νµ e− →µ− νe

charged current), und man hat lange Zeit geglaubt, dass die schwache Wech-
selwirkung nur diese Art von Reaktionen kennt.

6.1.1 Quasielastische νµ e−-Streuung

Als ein konkretes Beispiel betrachten wir zunächst den Streuprozess

νµ + e− → µ− + νe , (6.1)

den man auch als quasielastisch bezeichnet, da es sich um eine Zwei-Körperreaktion
mit unterschiedlichen Teilchen im Anfangs- und Endzustand handelt. Das zu-
gehörige Feynman-Diagramm ist in Abb. 6.1 wiedergegeben. Am νµ µ-Vertex
wird entweder ein W + emittiert oder ein W− absorbiert. Entsprechende Re-
geln gelten für den νe e-Vertex. Das W -Boson koppelt mit der Stärke g/

√
2 an

den (νµ µ)- bzw. (νe e)-Strom. Diese Ströme ändern am Vertex ihre Ladung
im Gegensatz zu den Strömen der elektromagnetischen Wechselwirkung. Sie
heißen daher – vielleicht etwas irreführend – „geladene“ Ströme. Die Konven-
tion, die dimensionslose Kopplungskonstante g durch

√
2 zu teilen, wird sich

später noch als sehr sinnvoll erweisen.
Der relativistischen Quantentheorie entnehmen wir, dass der Austausch

von stabilen massiven Spin 1-Teilchen mit dem Viererimpuls qµ und der
Masse M durch einen Faktor

−i
gµν − qµqν/M2

q2 −M2
(6.2)

beschrieben wird, der – verglichen mit dem Photonpropagator – neben dem
Massenterm im Nenner noch ein weiteres Glied qµ qν/M 2 im Zähler enthält.

Bei der Diskussion der Paritätsverletzung in der schwachen Wechselwir-
kung (Abschn. 2.5.4) haben wir gesehen, dass die Neutrinos immer linkshän-
dig sind. Im Matrixelement dürfen daher nur linkshändige Neutrinos auftau-
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chen. Unter Benutzung von (3.81) können wir also die Streuamplitude sofort
in der Form

Tfi = −g
2

2
ū(k′)γµ

1− γ5

2
u(k)

gµν − qµqν/M2
W

q2 −M2
W

ū(p′)γν
1− γ5

2
u(p) (6.3)

anschreiben. Um dieses Ergebnis durch Anwenden der Feynman-Regeln zu
erhalten, muss offenbar für jeden Vertex der schwachen Wechselwirkung ein
Faktor

−ig√
2
γµ

1− γ5

2
(6.4)

hinzugefügt werden.
Für die hier betrachteten Teilchenzerfälle und für die meisten bisher durch-

geführten Streuexperimente mit Neutrinos gilt |q2|�M 2
W . Weiter sieht man

mit Hilfe der Spinor-Gleichung (3.46) sofort ein, dass die Glieder mit qµ qν
als Faktor in (6.3) proportional zu m2/M 2

W werden, wobei m z. B. die Masse
des Myons ist. Damit werden also diese Anteile in unserem Beispiel völlig ver-
nachlässigbar. Selbst mit m =5GeV bleibt die Korrektur <1%. Der Wert für
die Kopplungskonstante g muss dem Experiment entnommen werden. In der
Näherung |q2|�M 2

W sind alle Zerfallsraten und Wirkungsquerschnitte pro-
portional zum Verhältnis (g/MW )4, und dieses Verhältnis wird konventionell
über die Abkürzung

g2

M2
W

=
8GF√

2
(6.5)

ausgedrückt, worin GF die Fermi-Kopplungskonstante ist. Mit diesen Nähe-
rungen und Abkürzungen reduziert sich (6.3) zu

Tfi =
4GF√

2
ū(k′)γµ

1− γ5

2
u(k)ū(p′)γµ

1− γ5

2
u(p) (6.6)

und entspricht nun dem Fermischen Ansatz einer Strom-Strom-Kopplung
mit einer dimensionsbehafteten Kopplungskonstanten. Der genaue Zahlen-
wert der Fermi-Konstanten von

GF = 1,16638 · 10−5 GeV−2 (6.7)

wurde aus der Lebensdauer der Myonen bestimmt, die wir im nächsten Ab-
schnitt behandeln werden. Für die meisten Rechnungen genügt die praktische
Näherung GF =10−5/M 2

p .
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In Abschn. 3.1.2 wurde das Konzept der Chiralität und der links- bzw. rechts-
händigen Ströme eingeführt. Mit der Definition (3.100) lässt sich (6.6) als
Produkt zweier linkshändiger Ströme schreiben,

Tfi =
4GF√

2
jµLjµ,L . (6.8)

Es hat allerdings lange gedauert, bis sichergestellt war, dass der geladene
schwache Strom linkshändig ist, also eine (V −A)-Struktur besitzt.

Wir können nun sofort zur Berechnung des Wirkungsquerschnitts der νµ e-
Streuung übergehen. Die Rechnung zeigt, dass nur die Amplitude für die Re-
aktion νµ e−L → νe µ

−
L von Null verschieden ist; es gilt also Helizitätserhaltung

am Vertex, auch wenn die Massen des Elektrons und des Myons berücksich-
tigt werden. Die nötigen Stromprodukte wurden in der Hochenergienäherung,
d. h. bei Vernachlässigung von Massentermen, schon in Abschn. 3.2 berech-
net. Die Ergebnisse der Tabelle 3.2 wurden dort für die elektromagnetische
Wechselwirkung abgeleitet, die zweite Zeile gehört zur uns im Augenblick
interessierenden elastischen Streuung von linkshändigen Teilchen. Der Über-
gang zur schwachen Wechselwirkung wird durch die Ersetzung von Kopplun-
gen und Propagator gemäß

e2

t
→ −4GF√

2
(6.9)

vollzogen. Damit folgt

Tfi(νµe
−
L → νeµ

−
L ) = 4

√
2GFs (6.10)

für die Amplitude und

dσ

dt
(νµe→ νeµ) =

G2
F

π
(6.11)

für den Wirkungsquerschnitt an unpolarisierten Elektronen. Die Winkelver-
teilung ist isotrop, im Schwerpunktssystem der Reaktion gilt

dσ

dΩ
(νµe→ νeµ) =

G2
Fs

4π2
, (6.12)

woraus unmittelbar der Ausdruck
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Abb. 6.2 Geladene Ströme in der ν̄ee-Streuung

σ(νµe→ νeµ) =
G2

Fs

π
(6.13)

für den totalen Querschnitt der quasielastischen Myon-Neutrino-Streuung an
Elektronen berechnet werden kann.

Die gleichen Formeln sind auch für die Streuung von Elektron-Neutrinos
(νe) an Elektronen gültig, falls man nur geladene Ströme berücksichtigt, also
z. B.

σ(νee
− → νee

−) =
G2

Fs

π
. (6.14)

Für die Streuung von ν̄µ an Elektronen gibt es kein Diagramm mit geladenen
Strömen, während für

ν̄e + e− → ν̄e + e− (6.15)

der Annihilationsgraph der Abb. 6.2 existiert. Wir berechnen den Wirkungs-
querschnitt für diese Reaktion, obwohl wir heute wissen, dass zu dem ge-
nannten Prozess auch der Austausch neutraler Vektorbosonen beiträgt (Ab-
schn. 7.1). Es geht hier aber zunächst weniger um die Ableitung von Formeln,
die wir mit Experimenten vergleichen können, als um eine grundsätzliche Dis-
kussion der Neutrino-Elektron-Streuung.

Das zugehörige Matrixelement entnehmen wir der ersten Zeile der Anni-
hilationstabelle 3.3 mit der Ersetzung von −e2/s durch 4GF/

√
2,

Tfi =
4GFs√

2
(1 + cosΘ) . (6.16)
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Hierin bezeichnet Θ wie üblich den Winkel zwischen dem ein- und auslaufen-
den ν̄e (bzw. zwischen dem ein- und auslaufenden e−) im Schwerpunktssys-
tem. Mit Hilfe von (6.16) wird nun der differentielle Querschnitt für unpola-
risierte Elektronen zu

dσ

dΩ
(ν̄e− → ν̄e−) =

G2
Fs

16π2
(1 + cosΘ)2 (6.17)

bzw. unter Benutzung von (3.172) zu

dσ

dt
(ν̄ee

− → ν̄ee
−) =

G2
F

π
(1− y)2 (6.18)

bestimmt. Die Integration der Winkelverteilung liefert für den totalen Wir-
kungsquerschnitt das Resultat

σ(ν̄ee
− → ν̄ee

−) =
G2

Fs

3π
, (6.19)

also 1/3 des Wertes, der für die Streuung von Neutrinos an Elektronen ge-
funden wurde. Diese Unterdrückung um einen Faktor 3 ist unmittelbar an-
schaulich einsichtig. Die extrem kurze Reichweite der schwachen Wechselwir-
kung bedeutet, dass die Streuung in einer s-Welle stattfindet. Im Fall der
ν̄e-Streuung hat der Anfangszustand die Komponente J z =1 des Gesamtdre-
himpulses, die anderen Werte 0,− 1 sind nicht möglich. Der Faktor 1/3 ent-
spricht offenbar dem statistischen Gewicht, während die eigentliche Stärke der
Wechselwirkung für die Neutrino-Elektron- und die Antineutrino-Elektron-
Streuung den gleichen Wert annimmt.

Der lineare Anstieg der hier untersuchten Wirkungsquerschnitte mit dem
Quadrat der Schwerpunktsenergie ist ein charakteristisches Kennzeichen der
Strom-Strom-Kopplung. Durch Vergleich der Winkelverteilung (6.17) mit
(2.267) lernen wir, dass die Helizitätsamplitude der Reaktion (6.15) nur durch
die Partialwelle t1 bestimmt wird. Der Betrag der Amplituden tJ kann je-
doch nie größer als 1 und ihr Realteil nie größer als 1/2 werden. Die maximale
Amplitude der elastischen Streureaktion (6.15) beträgt daher 12π(1+ cosΘ).
Diese sog. Unitaritätsgrenze wird also für die ν̄ee-Streuung bei

smax =
6π√
2GF

(6.20)

erreicht. Für die anderen hier diskutierten Reaktionen sind die numerischen
Faktoren etwas verschieden, z. B. ist smax in der νµ e-Streuung um einen
Faktor drei kleiner. Ihre Querschnitte überschreiten aber ebenfalls die Uni-
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taritätsgrenze bei Neutrino-Impulsen der Größenordnung
√
G−1

F = 350 GeV

im Schwerpunktssystem.
Natürlich dürfen wir bei diesen Energien nicht mehr mit der so ange-

nehmen Näherung q2�M 2
W arbeiten, sondern müssen den Vektormeson-

Propagator der Beziehung (6.3) berücksichtigen. Im Fall der ν̄ee-Streuung
rechnet man sofort aus, dass (6.19) außerhalb des Pols des Vektormeson-
Propagators durch

σ =
G2

Fs

3π

(
1

1− s/M2
W

)2

(6.21)

ersetzt wird, was für sehr große Energien zu einem 1/s-Verhalten des Quer-
schnitts ähnlich der Elektron-Positron-Annihilation in Myonen führt. Der
Wirkungsquerschnitt der quasielastischen Streuung (6.1), zu dem jetzt viele
Partialwellen beitragen, strebt einen konstanten Wert an [Qui13]. Wir wer-
den später sehen, dass bei Berücksichtigung der neutralen Ströme auch andere
Prozesse der schwachen Wechselwirkung ein vernünftiges Hochenergieverhal-
ten zeigen, also nicht die Unitaritätsgrenze verletzen.

Vertiefung
Zum Vergleich mit den Experimenten reicht die Hochenergie-Näherung
häufig nicht aus. Auch ohne Vernachlässigung der Massen von Elektron
und Myon lässt sich (6.6) einfach auswerten. Da nur eine Amplitude
beiträgt, gilt für den Streuprozess νµ e→ νe µ

|Tfi|2 =
∑
|Tfi|2 = 32G2

F(s−m2
µ)(s−m2

e) . (6.22)

Den Übergang zur Annihilation haben wir früher durch die Ersetzung
s↔ t vollzogen. In (6.18) bezeichnet t entsprechend der Herleitung das
Quadrat des Viererimpulsübertrags zwischen ein- und auslaufendem ν̄e,
während im Feynman-Diagramm der Abb. 6.1 t dem Impulsübertrag
zwischen νµ und µ− zugeordnet ist. Wir müssen daher jetzt die Erset-
zung s↔ u vornehmen und erhalten

|Tfi|2(ν̄ee
− → ν̄ee

−) = 32G2
F(u−m2

e)
2 . (6.23)

6.1.2 Der Zerfall des Myons

Als weiteres Beispiel behandeln wir nun den Myonzerfall, also die Reaktion
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Abb. 6.3 Der Zerfall des Myons. Die kinematischen Größen sind im Ruhesystem des
Myons spezifiziert

µ− → e− + ν̄e + νµ , (6.24)

die durch den Feynman-Graphen der Abb. 6.3 beschrieben wird. Die zugehö-
rige Amplitude lautet

Tfi =
4GF√

2
ū(k)γµ

1− γ5

2
u(p)ū(p′)γµ

1− γ5

2
v(k′) . (6.25)

Diese Amplitude wird nun im Ruhesystem des Myons ausgewertet, wobei
auch das Elektron als masseloses Teilchen angesehen wird. E ′ ist die Elektro-
nenenergie, die Energie des Myon-Neutrinos wird mit ω und die des Elektron-
Antineutrinos mit ω′ bezeichnet. Die z -Achse des Koordinatensystems legen
wir zur Vereinfachung in die Flugrichtung des auslaufenden Elektrons, dann
tauchen nur noch die Winkel Θνµ und Θν̄e auf. In der Näherung verschwin-
dender Elektronenmasse lässt sich das Matrixelement mit Hilfe der in Ab-
schn. 3.1 angegebenen Spinoren bequem ausrechnen. Für das Myon-Neutrino
und das Elektron müssen wir linkshändige (ūL(k), ūL(p′)) und für das ν̄e
rechtshändige (vR(k ′)) Spinoren wählen.

Für ein Myon, dessen Spin entlang der positiven z -Achse ausgerichtet ist,
erhalten wir (z. B. mit Hilfe unseres MAPLE-Pakets)

Tfi = 16GF

√
mµω′ωE′ sin(Θνµ/2) cos(Θν̄e/2) , (6.26)

während im Matrixelement für die andere Polarisationsrichtung der letzte
Cosinus-Faktor durch − sin(Θν̄e/2) ersetzt werden muss. Weiter gilt die ki-
nematische Beziehung

4ωE′ sin2(Θνµ/2) = (k + p′)2 , (6.27)

und wegen k + p′= p− k ′ lässt sich die rechte Seite dieser Gleichung ohne
weiteres auswerten. Das Resultat lautet
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4ωE′ sin2(Θνµ/2) = m2
µ − 2mµω

′ , (6.28)

und damit gelangt man schließlich zu

∑
|Tfi|2 = 32G2

Fm
2
µω
′(mµ − 2ω′) . (6.29)

Dieser Ausdruck hängt nur noch von ω′ ab. Die Formel (2.50) für den Drei-
Körper-Zerfall lässt sich direkt anwenden und ergibt die differentielle Zer-
fallsrate

d2Γ

dω′dE′
=
G2

F

2π3
mµω

′(mµ − 2ω′) . (6.30)

Sinnvollerweise integrieren wir noch über die Energie des ν̄e, da nur das Zer-
fallselektron beobachtet werden kann. Die Grenzen des Dalitz-Plots für den
Zerfall in drei masselose Teilchen sind besonders einfach. Sie bilden ein Drei-
eck in der E ′,ω′-Ebene (Abb. 2.3). Die Integrationsgrenzen für ω′ können an
diesem Dreieck sehr einfach zu

mµ

2
− E′ < ω′ <

mµ

2
(6.31)

abgelesen werden. Daher wird das Energiespektrum der Elektronen für
0≤E ′≤mµ/2 durch die Formel

dΓ

dE′
=
m2
µG

2
F

12π3
E′2

(
3− 4E′

mµ

)
(6.32)

wiedergegeben. Die Abb. 6.4 demonstriert die hervorragende Übereinstim-
mung zwischen Theorie und Experiment. Das Spektrum zeigt eine starke An-
häufung bei der kinematischen Grenze E ′=mµ/2, d. h. bei der in Abb. 2.23
gezeigten Konfiguration der Zerfallsteilchen. Daher kann aus der Richtung
der hochenergetischen Elektronen die Richtung des Myon-Spins entnommen
werden. Die Korrelation zwischen dem Impuls des Elektrons und dem Pola-
risationsvektor des Myons wurde in einer Serie von Experimenten am CERN
zur Präzisionsmessung des magnetischen Momentes des Myons benutzt. Diese
sog. (g − 2)-Experimente sind als Musterbeispiele physikalischer Experimen-
tierkunst bekannt geworden [Com81].

Die Zerfallsbreite des Myons gewinnen wir durch Integration von (6.32)
diesmal über E ′ in den Grenzen von 0 bis mµ/2 mit dem bekannten Resultat

Γ (µ→ eν̄eνµ) =
G2

Fm
5
µ

192π3
, (6.33)
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Abb. 6.4 Das Energiespektrum der Positronen im Zerfall µ+ → e+ν̄µνe

welches von grundlegender Bedeutung für alle weiteren Untersuchungen der
schwachen Wechselwirkung ist.

Falls die Elektronenmasse in der Rechnung nicht vernachlässigt wird, muss
(6.33) mit einem Korrekturfaktor

f(x) = 1− 8x (6.34)

multipliziert werden. Mit x =m2
e/m2

µ weicht f (x ) nur um ≈ 2 · 10−4 von 1
ab. Bei der angestrebten Genauigkeit in der Bestimmung von GF kann auch
der Term qµ qν/M 2 im Zähler des Propagators nicht mehr als verschwindend
klein angesehen werden. Zusätzlich sind elektromagnetische Strahlungskor-
rekturen zu berücksichtigen, so dass für die gesamte Korrektur nun

1− 8
m2
e

m2
µ

+
3

5

m2
µ

M2
W

− 1.82
α

π
(6.35)
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in erster Näherung anzusetzen ist. Die genaueste heute verwendete Formel
findet sich z. B. in [PDG12]. Da alle Korrekturen sehr klein sind, weicht der
in (6.7) angegebene Wert der Fermi-Konstanten nur um 0,2% von dem über
(6.33) bestimmten Wert ab.

Die Formel für die Myon-Lebensdauer enthält die Myonmasse in der fünf-
ten Potenz. Damit ist sofort klar, warum die Lebensdauer des τ -Leptons so
viel kürzer ist. Aus (6.33) berechnen wir unmittelbar die Partialbreite der
leptonischen Zerfälle des τ zu

Γ (τ → lν̄ν) = Γµ

(
mτ

mµ

)5

, (6.36)

worin das geladene Lepton l naturgemäß ein Elektron oder ein Myon sein
kann. Der Zerfall τ → eν̄ν hat ein Verzweigungsverhältnis von 17,83%. Zu-
sammen mit der τ -Lebensdauer wird daher eine Partialbreite von 4,040 · 10−4 eV
berechnet, die mit (6.36) innerhalb des Messfehlers von 0,3% übereinstimmt.
Bei der Anwendung auf den Zerfall τ → µν̄ν muss aber schon die Korrektur
(6.34) berücksichtigt werden. Dann ergibt sich auch hier wieder eine glänzen-
de Bestätigung der Theorie.

Die Ergebnisse der letzten beiden Abschnitte wurden unter der stillschwei-
genden Voraussetzung der Universalität der schwachen Wechselwirkung ab-
geleitet. Darunter verstehen wir die Tatsache, dass die W -Bosonen mit der
gleichen Stärke an die drei Leptonfamilien

(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
(6.37)

ankoppeln. Der Vergleich der partiellen Lebensdauern des τ -Leptons mit der
Lebensdauer des Myons stellt einen besonders beeindruckenden Test dieser
Hypothese dar. Die Übereinstimmung zwischen Theorie und Experiment war
lange Zeit nicht befriedigend, so dass ernste Zweifel an einer universellen
Kopplungsstärke für die drei Leptonfamilien aufkamen. Es hat sich aber dann
gezeigt, dass der dabei benutzte Wert der τ -Masse fehlerhaft war.

Vertiefung
Es ist interessant, den inneren Zusammenhang zwischen dem µ-Zerfall
und der νµ e-Streuung zu studieren. Unter Benutzung der Invarianten
s2 = (p− k′)2 wird (6.29) in∑

|Tfi|2 = 32G2
F(m2

µ − s2)s2 (6.38)
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umgeformt, wobei zu beachten ist, dass jetzt die Summe der Amplitu-
denquadrate ohne Mittelung über die Anfangszustände berechnet wur-
de. Diese Formel hätten wir aber auch direkt aus (6.22) unter Anwen-
dung der crossing-Relation s→ s2 und Multplikation mit −1 wegen der
Überkreuzung einer Fermionlinie erhalten können. Manchmal ist es aber
vorteilhaft, einzelne Helizitätsamplituden zur Hand zu haben.


