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Hadronen in der
Quantenchromodynamaik

Christoph Berger

Einfiihrung

Das Quarkmodell war von Anfang seiner Entwicklung an sehr erfolgreich
in der Erklarung des Spektrums der Hadronen. Mit Hilfe von nur drei
Konstituenten (den u-, d-, s-Quarks) gelang es, Ordnung in den sog.
,Zoo der Elementarteilchen zu bringen. Zur Zeit der Erfindung des
Modells, also in den 1960er Jahren, bestand dieser Zoo allerdings nur
aus etwa 20 Baryonen und 20 Mesonen, von denen einige sich durch
die neue Quantenzahl S (Seltsamkeit, strangeness) von den anderen
abhoben.

Diesem Erfolg standen auf der anderen Seite scheinbar uniiberwind-
liche Probleme gegeniiber. Wenn Baryonen und Mesonen wirklich aus
Quarks aufgebaut sein sollten, dann musste es doch méoglich sein, sie
in diese Konstituenten zu zerlegen, genauso wie das vorher mit den
aus Konstituenten aufgebauten Atomen und Kernen gelungen war. Al-
le Experimente dieser Art sind aber fehlgeschlagen. Ebenso schien es,
dass eine dynamische Erklarung der Quarkbindung in Widerspruch zum
Pauli-Prinzip geriet, das sich bisher als unentbehrlich zur Aufklarung
der Struktur der Atome und Kerne erwiesen hatte.

Aus all diesen Schwierigkeiten hat uns schlieflich die Quantenchro-
modynamik (QCD) befreit. Diese Quantenmechanik von Quarks mit
Farbladung soll jetzt ndher betrachtet werden. Wir folgen also nicht der
historischen Entwicklung des Quarkmodells und der dahinter stehenden
gruppentheoretischen Diskussion der flavor-Symmetrie, sondern begin-
nen in den ersten beiden Abschnitten mit der Einfiihrung der Farbla-
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dung und der Gluonen. Hierzu gehort notwendigerweise eine genaue Dis-
kussion der zugehorigen Symmetriegruppe. Im dritten Abschnitt folgt
eine Behandlung des Spektrums der Hadronen. Der vierte und fiinfte
Abschnitt soll zeigen, wie selbst Details des Massenspektrums und der
Zerfallsraten verstdndlich werden. Im sechsten Abschnitt wird dann die
Entdeckung langlebiger massereicher Hadronen und ihre Erklarung als
Bindungszustinde neuer schwerer Quarks behandelt. Diese experimen-
telle Entdeckung hat ganz entscheidend zur Entwicklung des Standard-
modells beigetragen. Die Entdeckung des top-Quarks im Jahre 1995
markiert einen weiteren Hohepunkt dieser Entwicklung.

4.1 Quarks mit Farbe

4.1.1 Das Statistik-Problem

Das in Abschn. 1.2.4 eingefiihrte Konstruktionsprinzip, Baryonenzustinde
aus drei Quarks aufzubauen, fiihrt uns bei ndherem Studium in eine Sack-
gasse. Um dies einzusehen, betrachten wir die Wellenfunktion der At -
Resonanz im Zustand J3=3/2,

ATH) = fu) [111) (4.1)

Wir haben wieder die ket-Notation fiir die Zustdnde gewahlt, die wir etwas
grofziigig auch als Wellenfunktion bezeichnen werden. Fiir die Spinzusténde
wurde hier eine eingéingige Bezeichnungsweise benutzt, bei der jedem Wert
j3==41/2 ein aufwirts bzw. abwérts gerichteter Pfeil zugeordnet wird. Die
Bahnwellenfunktion der Quarks wird nicht explizit angegeben. Da die A-
Resonanz das leichteste Spin 3/2-Baryon bildet, liegt es sehr nahe anzuneh-
men, dass die relativen Bahndrehimpulse aller Quarks verschwinden, ;) = 0.
Auch in der Atom- und Kernphysik haben die energetisch niedrigsten Zustén-
de zusammengesetzter Systeme einen verschwindenden Bahndrehimpuls. Die
Wellenfunktion (4.1) ist damit symmetrisch beim Vertauschen zweier Quarks
und deshalb im Widerspruch zum Pauli-Prinzip, das zwingend eine total an-
tisymmetrische Wellenfunktion fiir Systeme identischer Fermionen fordert.
Dieses wirklich fundamentale Problem lasst sich sehr elegant umgehen,
falls wir verlangen, dass die Quarks sich in einer weiteren neuen Eigenschaft
unterscheiden. Baryonen sind aus drei Quarks aufgebaut, es muss daher drei
Einstellungen dieser Eigenschaft geben.! In Anlehnung an die Farbentheorie
mit ihren drei Grundfarben Rot (R), Griin (G) und Blau (B) wird dieser

1 Mit einer zweiwertigen Quantenzahl wie z. B. dem Spin lésst sich eine total antisymme-
trische Wellenfunktion fiir drei Quarks nicht aufbauen.



4 Hadronen in der Quantenchromodynamik 321

neue innere Freiheitsgrad der Quarks als Farbe (color) bezeichnet. Es wird
sich in der quantitativen Diskussion des néchsten Abschnitts zeigen, dass die
antisymmetrischen Baryonenzustdnde gruppentheoretisch zu Farbsinguletts
gehoren, d. h. sie sind farbneutral oder in der Sprache der Farbentheorie weifs.
Diese Tatsache ist von grofiter Wichtigkeit, da im Spektrum der Hadronen
kein zusétzlicher Freiheitsgrad beobachtet wird, der sich mit der Farbe iden-
tifizieren ldsst.

Man muss zugeben, dass die Einfiihrung eines neuen inneren Freiheits-
grades der Quarks nur zur Behebung der Schwierigkeiten mit der Wellen-
funktion der A-Resonanz problematisch ist. Es wurde daher intensiv nach
Auswegen gesucht. Die Zuordnung von antisymmetrischen Bahnwellenfunk-
tionen z.B. hatte aber keine iiberzeugenden Erfolge vorzuweisen. Es wurde
auch diskutiert, das Pauli-Prinzip im Quarksektor aufzugeben, also eine neue
Statistik fiir die Quarks einzufiihren. Es hat sich jedoch schliefslich erwiesen,
dass die Farbhypothese der einfachste Weg zur Behebung der diskutierten
Schwierigkeiten ist, da sie in Verbindung mit der Forderung nach weifsen Ha-
dronen das Bauprinzip des Abschn. 1.2.4 fiir Mesonen und Baryonen theo-
retisch begriindet: Wir werden zeigen, dass nur die Zusténde |¢g) und |gqq)
farbneutral sind. Neben den Quarks selbst sind also z. B. Diquarks |gq) oder
Kombinationen wie |gqq) als beobachtbare Hadronen verboten.

4.1.2 Die Gruppe S U 3

Die folgenden Betrachtungen sind fiir den ungeiibten Leser nicht ganz einfach.
Es hilft sicher, zur Vorbereitung nochmals Abschn. 2.2 iiber die Drehgruppe
und Abschn. 2.8 iiber S U 2 durchzuarbeiten.

Einfiihrung der Gruppe. Die Farbzustinde |R),|G) und |B) sind die
orthonormierten Basisvektoren |e;) in einem dreidimensionalen, komplexen
Vektorraum. Ein beliebiger Zustand in diesem Raum ist durch

¥) = ¢' |e:) (4.2)

gegeben. Wir benutzen wieder die Summenkonvention, dass tiber gleiche Indi-
zes summiert wird. Die Matrizen U der unitiren, unimodularen (d.h. det U =
1) Koordinatentransformationen

¢ =U'rqd" (4.3)
in diesem Raum bilden eine Gruppe, ndmlich die Gruppe S U 3¢. Der In-

dex C soll darauf hinweisen, dass es sich um Farbtransformationen handelt.
Im Laufe der historischen Entwicklung der Teilchenphysik wurde die genann-
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te Gruppe allerdings zuerst im Sortenraum der drei Quarks u, d, s untersucht.
Wie immer driicken wir die Matrizen U durch ihre Generatoren \; aus,

U=e 10X/2 (4.4)

Mit Hilfe der Relation (2.497) folgt fiir die Ordnung der Gruppe m =38, d. h.
es gibt acht linear unabhéngige, hermitesche, spurfreie 3 x 3-Matrizen \; und
acht reelle Parameter ©;. In der Wahl einer speziellen Darstellung fiir die
Generatoren J; ist man an sich relativ frei. Historisch hat sich aber infolge
der Diskussion der S U 3p? im Sortenraum eine Konvention durchgesetzt,
bei der die ersten drei Generatoren durch Ergénzen der 7;-Matrizen (2.139)
gewonnen werden,

010 0-i0 100
M=[100], a=]i00], 3=[0-10] . (4.5)
000 000 000

Die Matrizen A4, As bzw. Ag, A7 werden ebenso nach dem Muster von 7
gebildet, nur erfolgt die Ergdnzung in der zweiten bzw. ersten Spalte und
Zeile, also

001 00 —i
M=1000), As =100 0 (4.6)
100 i0o0
und
000 000
M=1001], \=100-1] . (4.7)
010 010

S U 3 hat gemék (2.498) den Rang 2, es gibt also zwei diagonalisierbare Ge-
neratoren. Uber einen davon, A3, haben wir schon verfiigt, der zweite wird

durch

10 0

1
010 (4.8)

As = —=
V300 -2

2 Der Index F steht hier fiir flavor, bezeichnet also die Gruppenstruktur beziiglich der
Sorte der Quarks und nicht der Farbe.
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Tabelle 4.1 Die Strukturkonstanten der S U 3

ijk fijk
123 1
147 1/2
156 —1/2
246 1/2
257 1/2
345 1/2
367 —1/2
458 /3/2
678 \/3/2

festgelegt. Der Faktor 1/ V/3 ist eine Folge der Normierungsbedingung. Diese
verlangt, dass die Spur der Quadrate der einzelnen Generatoren den gleichen
Wert (hier also 2!) hat. Dieses Maf fiir das relative Gewicht der Genera-
toren macht auch anschaulich einen Sinn, da die Quadrate der A-Matrizen
ebenso wie die Quadrate der 7;, nach deren Muster sie konstruiert wurden,
Diagonalmatrizen sind.

Die Vertauschungsrelationen der A-Matrizen definieren eine Algebra

Ai Aj . Ak
—, = | =ifijr— 4.
[2’ 2} i (4.9)
mit total antisymmetrischen Strukturkonstanten f;;, auch die § U 3 ist al-
so halbeinfach und kompakt. Die aus den Vertauschungsrelationen folgenden
nicht verschwindenden Werte der Strukturkonstanten sind in Tabelle 4.1 auf-
gelistet.

Darstellungen der SU3. Die Darstellungen der S U 3 sind n x n-Matrizen
U, die in einem n-dimensionalen Vektorraum operieren. Der Einfachheit hal-
ber wird das gleiche Symbol U fiir die Darstellungen wie fiir die Matrizen
der Gruppe selbst gewéhlt. Diese Darstellungen haben die allgemeine Form

U=e i@ (4.10)

und zu ihrer expliziten Konstruktion kann man sich wieder der Algebra der
F-Spin-Operatoren

[F5, F] = ifijuF (4.11)
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bedienen.? Im Unterschied zu § U 2 und S O 3 ist jede Darstellung jetzt durch
die Eigenwerte von zwei Casimir-Operatoren und damit durch die Angabe
von zwei ganzen Zahlen p und ¢ charakterisiert, da S U 3 den Rang 2 hat.
Einer dieser beiden Operatoren ist ganz analog zum Fall der S U 2 gebildet,
wobei die Summe jetzt aber von 1 bis 8 lauft:

F>=>"F?. (4.12)

Die Eigenwerte lassen sich aus der Formel

1
fP=30* ++pg) +p+q (4.13)
berechnen, und die Dimension n = D(p, ¢) der Darstellungen ist mit p und ¢
iber

Dpa) = b+ Vg + (b +q+2) (414
verkniipft. Wir haben hier leider nicht die Mdglichkeit, diese Relationen zu
beweisen und die Darstellungen aus der F-Spin-Algebra zu konstruieren; in
dem klassischen Lehrbuch von Gasiorowicz [Gas75] oder in den Biichern von
Georgi [Geo82] bzw. Costa und Fogli [Cos12] findet der Leser aber eine sehr
schone Diskussion dieser Zusammenhénge.

In der Tabelle 4.2 sind die niedrigsten Dimensionen D(p, ¢) mit den zu-
gehorigen Wertepaaren von p und ¢ angegeben. Als wichtigste Merkregel
lesen wir aus dieser Tabelle ab, dass S U 3 neben dem (trivialen?) Singulett
auf jeden Fall noch drei-, sechs-, acht- und zehndimensionale Darstellungen
besitzt.

Die Fundamentaldarstellung, das Triplett, ist wieder durch die Matrizen
der Gruppe selbst gegeben, also gilt fiir die Generatoren

Fy=\/2 . (4.15)

Die zugehorigen Basisvektoren innerhalb des Multipletts, in unserem Fall also
die Farbzustande | R), | G), | B), unterscheiden sich durch die Eigenwerte zu F'3
und F'g. Man stellt sie graphisch in einem sog. Gewichtsdiagramm (Abb. 4.1)
dar, das entsprechend dem Rang 2 der Gruppe die Ebene ausfiillt.

3 Die Physiker bezeichnen die Operatoren F; gerne mit F-Spin, in Anlehnung an die
Gruppe S U 2, bei der die entsprechenden Operatoren wirklich mit dem Spin oder Isospin
identifiziert werden kénnen.

4 U=1,F;=0 .
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Tabelle 4.2 Die niedrigsten Darstellungen von S U 3

Symbol Name p, g D(p, q)
1 Singulett 0,0 1
3 Triplett 1,0 3
3* Antitriplett 0,1 3
8 Oktett 1,1 8
6 Sextett 2,0 6
10 Dekuplett 3,0 10
Fg A
T1/3
F£iF,
IG)e <——= OR)
N\ /AN
T T
—172 172 F3
F6i‘ 1F7 T F4_—|—iF‘5
|B)® -143

Abb. 4.1 Gewichtsdiagramm fiir das Quark-Farbtriplett

Analog zum Vorgehen bei S U 2 fasst man auch bei S U 3 die neben den
Eigenwertoperatoren verbleibenden Generatoren zu Leiteroperatoren zusam-
men. Durch sie kann man Zustdnde ineinander iiberfithren. Thre Wirkung
lésst sich sehr anschaulich durch die Pfeile in Abb. 4.1 verdeutlichen.

Beispiel 4.1
Als Darstellung der Basisvektoren |R),|G), |B) wéhlen wir die Spalten-
vektoren

1\ /o\ /o0
o], [1],]o
o/ \o/ \1

Dann verifiziert man mit Hilfe von (4.15) sofort



326 Christoph Berger

1
F3|R) = B} |R)
oder

=1
Fs|B) = —|B) .
Weiterhin ist es leicht, die Wirkung der Leiteroperatoren zu tiberpriifen.
Als Beispiel wird

010
Fi+iF,=1000
000

betrachtet. Offenbar gilt (F; +iF5)|G) = |R), wie es auch zu erwarten
war.

Neben der Fundamentaldarstellung bilden auch die Matrizen der zu (4.3)
konjugiert komplexen Gleichung

eine von der Fundamentaldarstellung linear unabhéngige Darstellung in drei
Dimensionen. Dies ist ein wichtiger Unterschied zu S U 2. Wir hatten be-
reits in Abschn. 2.8 festgestellt, dass Isospintransformationen und Teilchen-
Antiteilchen-Konjugation nicht unabhéngig voneinander sind. Daher sind
auch dort die Matrizen U* linear abhéngig von den Matrizen U.

Wegen

U* = e 10:(=2/2) (4.17)

kehren sich die Vorzeichen der Eigenwerte von F'3 und F's um, und der Dar-
stellungsraum wird daher durch die Antiteilchen |R),|G),|B) aufgespannt
(sieche Abb. 4.2). Hier tritt die lineare Unabhéngigkeit noch einmal klar zu-
tage: Ein Zustand mit den Eigenwerten 1/ V3 und 0 zu Fg und Fg lasst sich
nicht durch eine unitdre Transformation im Raum der Quarks erreichen.

WEeil die konjugiert komplexen Komponenten eines Vektors gleich den mit
einem unteren Index gekennzeichneten kovarianten Komponenten sind, trans-
formiert sich ein beliebiger Antiteilchen-Zustand geméfs

4= U v = U an - (4.18)
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B 11 F;
IR)® T °|G)

+ -1V/3

Abb. 4.2 Gewichtsdiagramm fiir das Antiquark-Farbtriplett

Héufig benutzt man in der Mathematik den Querstrich iiber einem Symbol
zur Bezeichnung der Operation ,konjugiert komplex®. In der Teilchenphysik
ist dies besonders anschaulich, da die Antiteilchen den konjugiert komplexen
Vektorkomponenten zugeordnet werden.

Produkte von Darstellungen. Unser Ziel ist es, Mesonen als |¢7)- und
Baryonen als |¢qgq)-Zustéinde zu beschreiben. Das Studium der Produkte von
Darstellungen ist daher von besonderem Interesse. Von den in der Literatur
diskutierten Methoden fiihrt die Untersuchung des Transformationsverhal-
tens von Tensoren, wenigstens fiir Produktdarstellungen niedriger Dimension,
zu schnellen Erfolgen bei der Ausreduktion der Darstellungen.

Wir haben bisher Quarkzustéinde durch kontravariante Vektoren und An-
tiquarks durch kovariante Vektoren bezeichnet. Die Komponenten eines be-
liebigen Zustandes im Produktraum von r Quarks und s Antiquarks werden
deshalb durch Tensoren

TG g =q™...q""qp, - ap, (4.19)

gebildet. Aufgrund der Transformationsgesetze (4.3) und (4.18) gilt fir die
Transformation der Produktzusténde

T/al R Ual'yl . Ullrﬂyr(U*l)(Slﬂ P

By B L (UTH T (4.20)

63 61 55

Besonders interessant sind die irreduziblen Darstellungen. Diese bilden ei-
ne Teilmenge der Tensoren auf sich selbst ab. Die Darstellungsmatrizen U
zerfallen daher in blockdiagonale Matrizen, wie es in Abschn. 2.2.5 am Bei-
spiel der Drehgruppe erldutert wurde. Die Transformationsmatrizen selbst
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sind fiir uns nicht so wichtig, sondern wir suchen das Bildungsgesetz fiir die
irreduziblen Tensoren. Wenn man dieses gefunden hat, folgt daraus natiirlich
auch das Bildungsgesetz fiir die zugehorigen Basisvektoren. Gliicklicherweise
gelten fiir alle S U N-Gruppen die gleichen Regeln zum Auffinden der irre-
duziblen Darstellungen [Geo82|. Die Aufgabe besteht im wesentlichen darin,
vom urspriinglichen Tensor symmetrische Tensoren abzuspalten, solange es
geht. Symmetrische Tensoren sind invariant unter der Vertauschung von zwei
beliebigen oberen Indizes oder zwei beliebigen unteren Indizes. Wenn sie obe-
re und untere Indizes enthalten, muss man sie auch noch spurfrei machen,
d. h. man muss dafiir sorgen, dass die Summe {iber Elemente mit jeweils einem
gleichen oberen und unteren Index verschwindet. Wenn sich von dem Pro-
dukt keine weiteren symmetrischen Tensoren abspalten lassen, gehort auch
der Rest zu einer irreduziblen Darstellung.

Das sieht alles komplizierter aus, als es ist. Wie so oft in der Physik reichen
aber die einfachsten Beispiele zunéchst aus. Dies wird in den beiden folgenden
Abschnitten klarer werden. Wir hétten auch die Ergebnisse des Abschn. 2.8.2
schon mit der Tensormethode ableiten kénnen, wollen das aber jetzt nicht
wiederholen, sondern den Ubungen vorbehalten.

4.1.3 Mesonen als gg-Zustiande

Zur Konstruktion der Farbwellenfunktion von Mesonen, die ja aus Quark-
Antiquark-Paaren bestehen, miissen wir offenbar den Tensor

T’y = ¢'a (4.21)

in irreduzible Tensoren zerlegen. Durch die Identitét

. ) 1 . 1 .
T =T — =0T, — 0" T, 4.22
k < kT N0k > + NOF ( )

wird dieser in einen symmetrischen spurfreien Tensor und die durch N ge-
teilte Spur (T'1 + T% + T3) zerlegt (0% bezeichnet wie iiblich das Kronecker-
Symbol). T4 ist eine N x N Matrix mit N? Komponenten. Durch die Spur-
freiheit wird eine Nebenbedingung festgelegt, also hat der erste Tensor

n=N?-1 (4.23)
linear unabhéngige Komponenten. Er erfiillt unsere Bedingungen und bildet

deshalb eine irreduzible Darstellung mit der Dimension n. Die Spur ist der
triviale Tensor ohne Indizes und daher ein Singulett unter S U N. Sie ist
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demnach geeignet, den farbneutralen oder weiffen Zusténden zugeordnet zu
werden. Fiir § U 3 haben wir also die Zerlegung

33" =198 (4.24)
in ein farbneutrales Singulett und in ein Farboktett gewonnen. Zunéchst ist

damit bewiesen, dass man aus Quarks und Antiquarks farblose Zustinde
aufbauen kann. Fiir die normierte Singulettwellenfunktion muss ersichtlich

1 _ _ _
1) = —=(|RR)+ |GG) + |BB 4.25
1) \/§(| ) +|GG) +|BB)) (4.25)
angesetzt werden. Auch die Oktettzustinde sind physikalisch sehr interessant.

Wir werden sie bald mit den Gluonen identifizieren. Geméifs der Zerlegung
(4.22) bestehen sie aus den sechs Zustédnden

|RG),|RB),|GR),|GB),|BR),|BG) (4.26)

und einer orthonormierten Linearkombination von zwei der drei Diagonalele-
mente

3C|RR) - |GG) ~ |BB))
S(~|RR) +2|GG) - |BB)) (4.27)
3(-|RR) - |GG) +2|BB)) .

Es ist tiblich, den § U 2-Zustand

1 _ _
E(]RR> —|GGY) (4.28)

als eine der Wellenfunktionen zu wihlen, dieser ergibt sich aus der Differenz
der ersten beiden Zeilen von (4.27). Dann wird aus der Summe

1 _ _ _
—(|RR)+ |GG) —2|BB 4.29
75 RR) +|GG) —2|BB)) (4:29)
die achte Wellenfunktion gebildet. In der Tabelle 4.3 ist die vollstéandige Zerle-
gung 3®3* nochmals zusammengefasst. Die gegeniiber dem Text auftretenden
Vorzeichenunterschiede entsprechen einer Konvention, die sich als sinnvoll er-
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Tabelle 4.3 Das Singulett (Zeile 1) und das Oktett (Zeilen 2 bis 9) aus Farb-Antifarb-
Zustanden der Gruppe S U 3¢

-5 (IRR) +|GG) + |BB))

[GB)
IRB)

~|GR)

2.(GG) — |RRY)

L (IRR) +|GG) —2|BB))
IRG)

~|BR)

|BG)

weisen wird, wenn wir die S U 3-Symmetrie im Sortenraum (u d s) der Quarks
behandeln.

4.1.4 Baryonen als q q g-Zustinde

Zur Konstruktion der Farbwellenfunktion von Baryonen miissen wir zunéchst
untersuchen, ob in der Produktdarstellung 3 ® 3 ® 3 ein Singulett enthalten
ist, da die beobachteten Baryonen natiirlich farblos sein miissen. Wir begin-
nen mit dem Produkt von zwei Quarks. Der zugehorige Tensor T°F ldsst
sich sofort in zwei Tensoren zerlegen, die symmetrisch bzw. antisymmetrisch
beziiglich einer Indexvertauschung sind:

1 1 ,
Tzk: _ §(le+Tkl)+§(Tzk_Tkz) ) (430)

Der erste Tensor hat (N2 + N)/2 linear unabhingige Komponenten, da bei
einem symmetrischen Tensor die oberhalb und unterhalb der Diagonale ste-
henden Elemente identisch sind. Er erfiillt offenbar die Symmetriebedingung
und bildet daher eine irreduzible Darstellung der Dimension

n= %(NQ + N) (4.31)

unter S U N, wahrend zum zweiten eine irreduzible Darstellung der Dimen-
sion
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gehort, da er sich ebenfalls nicht weiter reduzieren léasst. In S U 3 erfiillt
sogar der zweite Tensor explizit die Symmetriebedingung. Dies sehen wir
durch einen kleinen Umweg ein. Im Fall der S U 3 ist das Bildungsgesetz des
zweiten Tensors sichtlich mit

1 _
Vi= §5ijkTJk (4.33)

identisch, wobei €, der schon in Abschn. 2.2 eingefiihrte total antisymme-
trische Tensor ist. Hiermit gilt dann z. B. fiir i =1

Vi = %(T23 —T3?) (4.34)

und eine entsprechende Beziehung fiir ¢ = 2,3. Die drei Komponenten bilden
also einen Tensor mit nur einem (unteren) Index und erfiillen daher das Sym-
metrieprinzip. Dieser Trick der Kontraktion der Indizes lasst sich auch bei
komplizierteren Produkten anwenden.

Tensoren mit nur einem Index nennen wir Vektoren. Die besondere Ei-
genschaft, dass der geméafs (4.30) gebildete antisymmetrische Tensor wieder
ein Vektor ist, hat S U 3 mit O 3 gemeinsam. Dort ist dieser Tensor als das
Kreuzprodukt zweier Vektoren bekannt. Denken Sie z. B. an die Komponen-
ten des Drehimpulses, L=17 X p.

Die Darstellung 3 ® 3 ist nun ausreduziert. Es gilt

3®3=3"36 . (4.35)

Ein Singulett ldsst sich also aus zwei Quarks nicht bilden. Aber wegen

303 =1®8 (4.36)
ist sofort klar, dass in 3 ® 3 ® 3 ein Singulett enthalten ist. Mit Hilfe von
(4.33) und (4.22) ldsst sich der zugehorige Tensor

T% = cijd’' ¢ ¢~ (4.37)

leicht konstruieren. Farblose Baryonen werden daher durch die S U 3¢-
Singulettwellenfunktion
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Tabelle 4.4 Das Singulett (Zeile 1) und Oktett (Zeile 2 bis 9) aus drei Quarks in der
Gruppe S U 3¢

T (|RGB) — |RBG) + |BRG) — |BGR) + |GBR) — |GRB))

[GRG) — |GGR)
|RRG) — |RGR)
|GBG) — |GGB)
|RBG) — |[RGB) +|GBR) — |GRB))

L(|RGB> — |RBG) + |GBR) — |GRB) + 2|BGR) — 2|BRG))
(IRBR) — |RRB))

(IBBG) — |BGB))

(IBBR) — |BRB))

)
)
)

_ b
Ve

beschrieben. Sie ist antisymmetrisch bei Vertauschung von zwei beliebigen
Farbindizes und garantiert damit die Erfiillung der im ersten Abschnitt dieses
Kapitels geforderten Bedingung zur Erfiillung des Pauli-Prinzips.

Der Vollstandigkeit halber soll noch die komplette Zerlegung der Produkt-
darstellung von drei Quarks in irreduzible Darstellungen angegeben werden.
Das in (4.36) enthaltene Oktett gewinnen wir aus den Zustédnden der Tabel-
le 4.3, indem wir entsprechend der Vorschrift (4.33) jede Antifarbe durch die
passende Vertauschung zweier Farben ersetzen, also z. B. R durch G B — B G.
Die Zustdnde miissen anschlieffend noch normiert werden. Das Ergebnis ist
in der Tabelle 4.4 angegeben, die der Leser ohne allzu grofse Schwierigkeiten
nachrechnen kénnen sollte.

Es lasst sich ebenfalls relativ leicht abzéhlen, dass sich aus den Produk-
ten TH*= ¢ ¢ ¢* genau zehn Zustinde konstruieren lassen, die vollstéindig
symmetrisch in den oberen Indizes sind. Zunéchst gibt es drei Zustdnde mit
drei identischen Quarks, also |[RRR), |GG G) und |BBB). Dann kommen die
Zusténde, in denen zwei Quarks identisch sind. Dazu gehort z.B. |[RGG),
welcher durch Symmetrisierung und Normierung zu

) (|IRGB) — |RBG) + |BRG) — |BGR) + |GBR) — |GRB)) (4.38)

RS
V3

wird. Auf diese Art lassen sich sechs Zusténde konstruieren. Der zehnte Zu-
stand |[RG B) ist in allen drei Quarks unterschiedlich und nimmt nach Sym-
metrisierung und Normierung die Gestalt

(IRGG) + |GRG) + |GGR)) (4.39)
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Tabelle 4.5 Das Dekuplett aus drei Quarks in der Gruppe S U 3¢

|RRR)

5 (IRRG) + |RGR) + |GRR))
5 (IRGG) + |GRG) + |GGR))
|GGG)

5 (IRRB) + |RBR) + | BRR))
5 (IRGB) + |[RBG) + |BRG) +|BGR) + |GBR) + |GRB))
5 (IGGB) + |GBG) + |BGG)

5(IRBB) + |BRB) + |BBR)

5 (IGBB) + |BGB) + | BBG)

|BBB)

)
)
)

=
V6

an. Das Ergebnis ist in Tabelle 4.5 zusammengefasst.
Die 18 Zusténde des Produkts 3 ® 6 folgen offenbar dem Bildungsgesetz

(IRGB) + |RBG) + |BRG) + |BGR) + |GBR) + |GRB))  (4.40)

T9% = ¢'(¢ ¢" + ¢"¢’) . (4.41)

Um diese Produkte in irreduzible Darstellungen zu zerlegen, wird das De-
kuplett der Tabelle 4.5 abgespalten. Das lésst sich z.B. dadurch erledigen,
dass man eine Liste der 18 Zustédnde anfertigt. In dieser Liste erkennt der
fleifsige Leser sofort, dass die vollstdndig symmetrischen Zustédnde der zehn-
dimensionalen Darstellung entweder direkt auftauchen oder durch einfache
Linearkombinationen zu erhalten sind. Die Linearkombinationen werden so
konstruiert, dass sie jeweils orthogonal zueinander sind. Nach Abtrennen des
Dekupletts bleiben acht Zusténde iibrig. Sie bilden eine alternative Darstel-
lung der Dimension acht und sind in der Tabelle 4.6 — wieder unter Ver-
wendung einer fiir spétere Zwecke niitzlichen Phasenkonvention — ebenfalls
zusammengestellt.
Unter Benutzung von

3@6=8@10 (4.42)

sind wir nun bei der gesuchten Zerlegung

30393=16808® 10 (4.43)

angelangt.
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Tabelle 4.6 Das alternative Oktett aus drei Quarks in der Gruppe S U 3¢

(IGGR) + |GRG) — 2|RGGY)
(—|RRG) — |RGR) + 2|GRR))
(IGGB) + |GBG) — 2|BGGY))

ShsksH

S
»

|RRB) + |RBR) — 2| BRR))
—|BGB) — |BBG) + 2|GBB))
—|BRB) — |BBR) + 2|RBB))
|GRB) +|GBR) — |[RGB) — |RBG))

S-S

(
(
(
(

=
~
N

(IRGB) + |RBG) + |GRB) + |GBR) — 2| BRG) — 2|BGR))

In 3 ® 3 ® 3 ist also genau ein Singulett enthalten. Daneben kénnen drei
Quarks noch Farboktetts und Dekupletts bilden. Natiirlich lassen sich auch
aus drei Antiquarks oder aus Produkten von |¢q), |¢gq) und |ggg) Farb-
singuletts konstruieren. Dies ist z. B.fiir den Einbau der Kernphysik in das
Quarkmodell sehr wichtig. In S U 3 ist es aber auf keine andere Art und Wei-
se moglich, ein Singulett durch Produkte dreidimensionaler Darstellungen zu
erhalten. Mit der Forderung, dass Hadronen farblos sind, bleiben also nur
zwei fundamentale Moglichkeiten, ndmlich |¢g) und |gqq), um Hadronen aus

Quarks aufzubauen.

Ubungen

4.1 Rechnen Sie die Werte der Tabelle 4.1 nach und tiberpriifen Sie die
Normierung der A-Matrizen. Besonders einfach geht das wieder bei

Verwendung algebraischer Programme.

4.2 Benutzen Sie die Tensormethode zur Bestimmung der Darstellungen
eines Quark-Quark- bzw. Quark-Antiquark-Zustandes in S U 2.
4.3 Beweisen Sie durch explizite Konstruktion, dass die unitidre Trans-

formation U; = e~'®%1 das Singulett (4.25) invariant lisst.



