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Hadronen in der
Quantenchromodynamik

Christoph Berger

Einführung
Das Quarkmodell war von Anfang seiner Entwicklung an sehr erfolgreich
in der Erklärung des Spektrums der Hadronen. Mit Hilfe von nur drei
Konstituenten (den u-, d -, s-Quarks) gelang es, Ordnung in den sog.
„Zoo der Elementarteilchen“ zu bringen. Zur Zeit der Erfindung des
Modells, also in den 1960er Jahren, bestand dieser Zoo allerdings nur
aus etwa 20 Baryonen und 20 Mesonen, von denen einige sich durch
die neue Quantenzahl S (Seltsamkeit, strangeness) von den anderen
abhoben.

Diesem Erfolg standen auf der anderen Seite scheinbar unüberwind-
liche Probleme gegenüber. Wenn Baryonen und Mesonen wirklich aus
Quarks aufgebaut sein sollten, dann musste es doch möglich sein, sie
in diese Konstituenten zu zerlegen, genauso wie das vorher mit den
aus Konstituenten aufgebauten Atomen und Kernen gelungen war. Al-
le Experimente dieser Art sind aber fehlgeschlagen. Ebenso schien es,
dass eine dynamische Erklärung der Quarkbindung in Widerspruch zum
Pauli-Prinzip geriet, das sich bisher als unentbehrlich zur Aufklärung
der Struktur der Atome und Kerne erwiesen hatte.

Aus all diesen Schwierigkeiten hat uns schließlich die Quantenchro-
modynamik (QCD) befreit. Diese Quantenmechanik von Quarks mit
Farbladung soll jetzt näher betrachtet werden. Wir folgen also nicht der
historischen Entwicklung des Quarkmodells und der dahinter stehenden
gruppentheoretischen Diskussion der flavor -Symmetrie, sondern begin-
nen in den ersten beiden Abschnitten mit der Einführung der Farbla-
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dung und der Gluonen. Hierzu gehört notwendigerweise eine genaue Dis-
kussion der zugehörigen Symmetriegruppe. Im dritten Abschnitt folgt
eine Behandlung des Spektrums der Hadronen. Der vierte und fünfte
Abschnitt soll zeigen, wie selbst Details des Massenspektrums und der
Zerfallsraten verständlich werden. Im sechsten Abschnitt wird dann die
Entdeckung langlebiger massereicher Hadronen und ihre Erklärung als
Bindungszustände neuer schwerer Quarks behandelt. Diese experimen-
telle Entdeckung hat ganz entscheidend zur Entwicklung des Standard-
modells beigetragen. Die Entdeckung des top-Quarks im Jahre 1995
markiert einen weiteren Höhepunkt dieser Entwicklung.

4.1 Quarks mit Farbe

4.1.1 Das Statistik-Problem

Das in Abschn. 1.2.4 eingeführte Konstruktionsprinzip, Baryonenzustände
aus drei Quarks aufzubauen, führt uns bei näherem Studium in eine Sack-
gasse. Um dies einzusehen, betrachten wir die Wellenfunktion der ∆++ -
Resonanz im Zustand J 3 =3/2,

∣∣∆++
〉

= |uuu〉 |↑↑↑〉 . (4.1)

Wir haben wieder die ket-Notation für die Zustände gewählt, die wir etwas
großzügig auch als Wellenfunktion bezeichnen werden. Für die Spinzustände
wurde hier eine eingängige Bezeichnungsweise benutzt, bei der jedem Wert
j 3 =±1/2 ein aufwärts bzw. abwärts gerichteter Pfeil zugeordnet wird. Die
Bahnwellenfunktion der Quarks wird nicht explizit angegeben. Da die ∆-
Resonanz das leichteste Spin 3/2-Baryon bildet, liegt es sehr nahe anzuneh-
men, dass die relativen Bahndrehimpulse aller Quarks verschwinden, l (i) =0.
Auch in der Atom- und Kernphysik haben die energetisch niedrigsten Zustän-
de zusammengesetzter Systeme einen verschwindenden Bahndrehimpuls. Die
Wellenfunktion (4.1) ist damit symmetrisch beim Vertauschen zweier Quarks
und deshalb im Widerspruch zum Pauli-Prinzip, das zwingend eine total an-
tisymmetrische Wellenfunktion für Systeme identischer Fermionen fordert.

Dieses wirklich fundamentale Problem lässt sich sehr elegant umgehen,
falls wir verlangen, dass die Quarks sich in einer weiteren neuen Eigenschaft
unterscheiden. Baryonen sind aus drei Quarks aufgebaut, es muss daher drei
Einstellungen dieser Eigenschaft geben.1 In Anlehnung an die Farbentheorie
mit ihren drei Grundfarben Rot (R), Grün (G) und Blau (B) wird dieser

1 Mit einer zweiwertigen Quantenzahl wie z. B. dem Spin lässt sich eine total antisymme-
trische Wellenfunktion für drei Quarks nicht aufbauen.
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neue innere Freiheitsgrad der Quarks als Farbe (color) bezeichnet. Es wird
sich in der quantitativen Diskussion des nächsten Abschnitts zeigen, dass die
antisymmetrischen Baryonenzustände gruppentheoretisch zu Farbsinguletts
gehören, d. h. sie sind farbneutral oder in der Sprache der Farbentheorie weiß.
Diese Tatsache ist von größter Wichtigkeit, da im Spektrum der Hadronen
kein zusätzlicher Freiheitsgrad beobachtet wird, der sich mit der Farbe iden-
tifizieren lässt.

Man muss zugeben, dass die Einführung eines neuen inneren Freiheits-
grades der Quarks nur zur Behebung der Schwierigkeiten mit der Wellen-
funktion der ∆-Resonanz problematisch ist. Es wurde daher intensiv nach
Auswegen gesucht. Die Zuordnung von antisymmetrischen Bahnwellenfunk-
tionen z. B. hatte aber keine überzeugenden Erfolge vorzuweisen. Es wurde
auch diskutiert, das Pauli-Prinzip im Quarksektor aufzugeben, also eine neue
Statistik für die Quarks einzuführen. Es hat sich jedoch schließlich erwiesen,
dass die Farbhypothese der einfachste Weg zur Behebung der diskutierten
Schwierigkeiten ist, da sie in Verbindung mit der Forderung nach weißen Ha-
dronen das Bauprinzip des Abschn. 1.2.4 für Mesonen und Baryonen theo-
retisch begründet: Wir werden zeigen, dass nur die Zustände |qq̄〉 und |qqq〉
farbneutral sind. Neben den Quarks selbst sind also z. B. Diquarks |qq〉 oder
Kombinationen wie |qqq̄〉 als beobachtbare Hadronen verboten.

4.1.2 Die Gruppe S U 3

Die folgenden Betrachtungen sind für den ungeübten Leser nicht ganz einfach.
Es hilft sicher, zur Vorbereitung nochmals Abschn. 2.2 über die Drehgruppe
und Abschn. 2.8 über S U 2 durchzuarbeiten.

Einführung der Gruppe. Die Farbzustände |R〉, |G〉 und |B〉 sind die
orthonormierten Basisvektoren |e i〉 in einem dreidimensionalen, komplexen
Vektorraum. Ein beliebiger Zustand in diesem Raum ist durch

|ψ〉 = qi |ei〉 (4.2)

gegeben. Wir benutzen wieder die Summenkonvention, dass über gleiche Indi-
zes summiert wird. Die Matrizen U der unitären, unimodularen (d. h. detU =
1) Koordinatentransformationen

q′i = U ikq
k (4.3)

in diesem Raum bilden eine Gruppe, nämlich die Gruppe S U 3C. Der In-
dex C soll darauf hinweisen, dass es sich um Farbtransformationen handelt.
Im Laufe der historischen Entwicklung der Teilchenphysik wurde die genann-
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te Gruppe allerdings zuerst im Sortenraum der drei Quarks u, d, s untersucht.
Wie immer drücken wir die Matrizen U durch ihre Generatoren λi aus,

U = e−iΘiλi/2 . (4.4)

Mit Hilfe der Relation (2.497) folgt für die Ordnung der Gruppe m =8, d. h.
es gibt acht linear unabhängige, hermitesche, spurfreie 3× 3-Matrizen λi und
acht reelle Parameter Θi. In der Wahl einer speziellen Darstellung für die
Generatoren λi ist man an sich relativ frei. Historisch hat sich aber infolge
der Diskussion der S U 3F2 im Sortenraum eine Konvention durchgesetzt,
bei der die ersten drei Generatoren durch Ergänzen der τ i-Matrizen (2.139)
gewonnen werden,

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 . (4.5)

Die Matrizen λ4,λ5 bzw. λ6,λ7 werden ebenso nach dem Muster von τ1,2
gebildet, nur erfolgt die Ergänzung in der zweiten bzw. ersten Spalte und
Zeile, also

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 (4.6)

und

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 . (4.7)

S U 3 hat gemäß (2.498) den Rang 2, es gibt also zwei diagonalisierbare Ge-
neratoren. Über einen davon, λ3, haben wir schon verfügt, der zweite wird
durch

λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (4.8)

2 Der Index F steht hier für flavor, bezeichnet also die Gruppenstruktur bezüglich der
Sorte der Quarks und nicht der Farbe.
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Tabelle 4.1 Die Strukturkonstanten der S U 3

i j k f i j k
123 1
147 1/2
156 −1/2
246 1/2
257 1/2
345 1/2
367 −1/2
458

√
3/2

678
√

3/2

festgelegt. Der Faktor 1/
√

3 ist eine Folge der Normierungsbedingung. Diese
verlangt, dass die Spur der Quadrate der einzelnen Generatoren den gleichen
Wert (hier also 2 !) hat. Dieses Maß für das relative Gewicht der Genera-
toren macht auch anschaulich einen Sinn, da die Quadrate der λ-Matrizen
ebenso wie die Quadrate der τ i, nach deren Muster sie konstruiert wurden,
Diagonalmatrizen sind.

Die Vertauschungsrelationen der λ-Matrizen definieren eine Algebra

[
λi
2
,
λj
2

]
= ifijk

λk
2

(4.9)

mit total antisymmetrischen Strukturkonstanten f i j k, auch die S U 3 ist al-
so halbeinfach und kompakt. Die aus den Vertauschungsrelationen folgenden
nicht verschwindenden Werte der Strukturkonstanten sind in Tabelle 4.1 auf-
gelistet.

Darstellungen der SU3. Die Darstellungen der S U 3 sind n ×n-Matrizen
U, die in einem n-dimensionalen Vektorraum operieren. Der Einfachheit hal-
ber wird das gleiche Symbol U für die Darstellungen wie für die Matrizen
der Gruppe selbst gewählt. Diese Darstellungen haben die allgemeine Form

U = e−iΘiFi , (4.10)

und zu ihrer expliziten Konstruktion kann man sich wieder der Algebra der
F -Spin-Operatoren

[Fi, Fj ] = ifijkFk (4.11)
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bedienen.3 Im Unterschied zu S U 2 und S O 3 ist jede Darstellung jetzt durch
die Eigenwerte von zwei Casimir-Operatoren und damit durch die Angabe
von zwei ganzen Zahlen p und q charakterisiert, da S U 3 den Rang 2 hat.
Einer dieser beiden Operatoren ist ganz analog zum Fall der S U 2 gebildet,
wobei die Summe jetzt aber von 1 bis 8 läuft:

F 2 =
∑
i

F 2
i . (4.12)

Die Eigenwerte lassen sich aus der Formel

f2 =
1

3
(p2 + q2 + pq) + p+ q (4.13)

berechnen, und die Dimension n =D(p, q) der Darstellungen ist mit p und q
über

D(p, q) =
1

2
(p+ 1)(q + 1)(p+ q + 2) (4.14)

verknüpft. Wir haben hier leider nicht die Möglichkeit, diese Relationen zu
beweisen und die Darstellungen aus der F -Spin-Algebra zu konstruieren; in
dem klassischen Lehrbuch von Gasiorowicz [Gas75] oder in den Büchern von
Georgi [Geo82] bzw. Costa und Fogli [Cos12] findet der Leser aber eine sehr
schöne Diskussion dieser Zusammenhänge.

In der Tabelle 4.2 sind die niedrigsten Dimensionen D(p, q) mit den zu-
gehörigen Wertepaaren von p und q angegeben. Als wichtigste Merkregel
lesen wir aus dieser Tabelle ab, dass S U 3 neben dem (trivialen4) Singulett
auf jeden Fall noch drei-, sechs-, acht- und zehndimensionale Darstellungen
besitzt.

Die Fundamentaldarstellung, das Triplett, ist wieder durch die Matrizen
der Gruppe selbst gegeben, also gilt für die Generatoren

Fi = λi/2 . (4.15)

Die zugehörigen Basisvektoren innerhalb des Multipletts, in unserem Fall also
die Farbzustände |R〉, |G〉, |B〉, unterscheiden sich durch die Eigenwerte zu F 3

und F 8. Man stellt sie graphisch in einem sog. Gewichtsdiagramm (Abb. 4.1)
dar, das entsprechend dem Rang 2 der Gruppe die Ebene ausfüllt.

3 Die Physiker bezeichnen die Operatoren F i gerne mit F -Spin, in Anlehnung an die
Gruppe S U 2, bei der die entsprechenden Operatoren wirklich mit dem Spin oder Isospin
identifiziert werden können.
4 U =1,F i =0 .



4 Hadronen in der Quantenchromodynamik 325

Tabelle 4.2 Die niedrigsten Darstellungen von S U 3

Symbol Name p, q D(p, q)
1 Singulett 0,0 1
3 Triplett 1,0 3
3* Antitriplett 0,1 3
8 Oktett 1,1 8
6 Sextett 2,0 6
10 Dekuplett 3,0 10

Abb. 4.1 Gewichtsdiagramm für das Quark-Farbtriplett

Analog zum Vorgehen bei S U 2 fasst man auch bei S U 3 die neben den
Eigenwertoperatoren verbleibenden Generatoren zu Leiteroperatoren zusam-
men. Durch sie kann man Zustände ineinander überführen. Ihre Wirkung
lässt sich sehr anschaulich durch die Pfeile in Abb. 4.1 verdeutlichen.

Beispiel 4.1
Als Darstellung der Basisvektoren |R〉, |G〉, |B〉 wählen wir die Spalten-
vektoren 1

0
0

 ,

0
1
0

 ,

0
0
1

 .

Dann verifiziert man mit Hilfe von (4.15) sofort
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F3 |R〉 =
1

2
|R〉

oder

F8 |B〉 =
−1√

3
|B〉 .

Weiterhin ist es leicht, die Wirkung der Leiteroperatoren zu überprüfen.
Als Beispiel wird

F1 + iF2 =

0 1 0
0 0 0
0 0 0


betrachtet. Offenbar gilt (F 1 + iF 2)|G〉= |R〉, wie es auch zu erwarten
war.

Neben der Fundamentaldarstellung bilden auch die Matrizen der zu (4.3)
konjugiert komplexen Gleichung

q′∗i = (U∗)ikq
∗k (4.16)

eine von der Fundamentaldarstellung linear unabhängige Darstellung in drei
Dimensionen. Dies ist ein wichtiger Unterschied zu S U 2. Wir hatten be-
reits in Abschn. 2.8 festgestellt, dass Isospintransformationen und Teilchen-
Antiteilchen-Konjugation nicht unabhängig voneinander sind. Daher sind
auch dort die Matrizen U * linear abhängig von den Matrizen U.

Wegen

U∗ = e−iΘi(−λ∗
i /2) (4.17)

kehren sich die Vorzeichen der Eigenwerte von F 3 und F 8 um, und der Dar-
stellungsraum wird daher durch die Antiteilchen |R̄〉, |Ḡ〉, |B̄〉 aufgespannt
(siehe Abb. 4.2). Hier tritt die lineare Unabhängigkeit noch einmal klar zu-
tage: Ein Zustand mit den Eigenwerten 1/

√
3 und 0 zu F 8 und F 3 lässt sich

nicht durch eine unitäre Transformation im Raum der Quarks erreichen.
Weil die konjugiert komplexen Komponenten eines Vektors gleich den mit

einem unteren Index gekennzeichneten kovarianten Komponenten sind, trans-
formiert sich ein beliebiger Antiteilchen-Zustand gemäß

q′i = (U∗)ikqk = (U−1)kiqk . (4.18)
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|B|B

|R |G

F3
–1/2 1/2

1/  3

–1/  3

F8

Abb. 4.2 Gewichtsdiagramm für das Antiquark-Farbtriplett

Häufig benutzt man in der Mathematik den Querstrich über einem Symbol
zur Bezeichnung der Operation „konjugiert komplex“. In der Teilchenphysik
ist dies besonders anschaulich, da die Antiteilchen den konjugiert komplexen
Vektorkomponenten zugeordnet werden.

Produkte von Darstellungen. Unser Ziel ist es, Mesonen als |qq̄〉- und
Baryonen als |qqq〉-Zustände zu beschreiben. Das Studium der Produkte von
Darstellungen ist daher von besonderem Interesse. Von den in der Literatur
diskutierten Methoden führt die Untersuchung des Transformationsverhal-
tens von Tensoren, wenigstens für Produktdarstellungen niedriger Dimension,
zu schnellen Erfolgen bei der Ausreduktion der Darstellungen.

Wir haben bisher Quarkzustände durch kontravariante Vektoren und An-
tiquarks durch kovariante Vektoren bezeichnet. Die Komponenten eines be-
liebigen Zustandes im Produktraum von r Quarks und s Antiquarks werden
deshalb durch Tensoren

Tα1 ... αr

β1 ... βs
= qα1 . . . qαrqβ1 . . . qβs (4.19)

gebildet. Aufgrund der Transformationsgesetze (4.3) und (4.18) gilt für die
Transformation der Produktzustände

T ′α1 ... αr

β1 ... βs
= Uα1

γ1 . . . U
αr
γr (U−1)δ1β1

. . . (U−1)δsβs
T γ1 ... γrδ1 ... δs

. (4.20)

Besonders interessant sind die irreduziblen Darstellungen. Diese bilden ei-
ne Teilmenge der Tensoren auf sich selbst ab. Die Darstellungsmatrizen U
zerfallen daher in blockdiagonale Matrizen, wie es in Abschn. 2.2.5 am Bei-
spiel der Drehgruppe erläutert wurde. Die Transformationsmatrizen selbst
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sind für uns nicht so wichtig, sondern wir suchen das Bildungsgesetz für die
irreduziblen Tensoren. Wenn man dieses gefunden hat, folgt daraus natürlich
auch das Bildungsgesetz für die zugehörigen Basisvektoren. Glücklicherweise
gelten für alle S U N -Gruppen die gleichen Regeln zum Auffinden der irre-
duziblen Darstellungen [Geo82]. Die Aufgabe besteht im wesentlichen darin,
vom ursprünglichen Tensor symmetrische Tensoren abzuspalten, solange es
geht. Symmetrische Tensoren sind invariant unter der Vertauschung von zwei
beliebigen oberen Indizes oder zwei beliebigen unteren Indizes. Wenn sie obe-
re und untere Indizes enthalten, muss man sie auch noch spurfrei machen,
d. h. man muss dafür sorgen, dass die Summe über Elemente mit jeweils einem
gleichen oberen und unteren Index verschwindet. Wenn sich von dem Pro-
dukt keine weiteren symmetrischen Tensoren abspalten lassen, gehört auch
der Rest zu einer irreduziblen Darstellung.

Das sieht alles komplizierter aus, als es ist. Wie so oft in der Physik reichen
aber die einfachsten Beispiele zunächst aus. Dies wird in den beiden folgenden
Abschnitten klarer werden. Wir hätten auch die Ergebnisse des Abschn. 2.8.2
schon mit der Tensormethode ableiten können, wollen das aber jetzt nicht
wiederholen, sondern den Übungen vorbehalten.

4.1.3 Mesonen als qq-Zustände

Zur Konstruktion der Farbwellenfunktion von Mesonen, die ja aus Quark-
Antiquark-Paaren bestehen, müssen wir offenbar den Tensor

T ik = qiqk (4.21)

in irreduzible Tensoren zerlegen. Durch die Identität

T ik =

(
T ik −

1

N
δikT

m
m

)
+

1

N
δikT

m
m (4.22)

wird dieser in einen symmetrischen spurfreien Tensor und die durch N ge-
teilte Spur (T 1

1 +T 2
2 +T 3

3) zerlegt (δik bezeichnet wie üblich das Kronecker-
Symbol). T i

k ist eine N ×N Matrix mit N 2 Komponenten. Durch die Spur-
freiheit wird eine Nebenbedingung festgelegt, also hat der erste Tensor

n = N2 − 1 (4.23)

linear unabhängige Komponenten. Er erfüllt unsere Bedingungen und bildet
deshalb eine irreduzible Darstellung mit der Dimension n. Die Spur ist der
triviale Tensor ohne Indizes und daher ein Singulett unter S U N. Sie ist
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demnach geeignet, den farbneutralen oder weißen Zuständen zugeordnet zu
werden. Für S U 3 haben wir also die Zerlegung

3⊗ 3∗ = 1⊕ 8 (4.24)

in ein farbneutrales Singulett und in ein Farboktett gewonnen. Zunächst ist
damit bewiesen, dass man aus Quarks und Antiquarks farblose Zustände
aufbauen kann. Für die normierte Singulettwellenfunktion muss ersichtlich

|1〉 =
1√
3

(
∣∣RR̄〉+

∣∣GḠ〉+
∣∣BB̄〉) (4.25)

angesetzt werden. Auch die Oktettzustände sind physikalisch sehr interessant.
Wir werden sie bald mit den Gluonen identifizieren. Gemäß der Zerlegung
(4.22) bestehen sie aus den sechs Zuständen

∣∣RḠ〉 , ∣∣RB̄〉 , ∣∣GR̄〉 , ∣∣GB̄〉 , ∣∣BR̄〉 , ∣∣BḠ〉 (4.26)

und einer orthonormierten Linearkombination von zwei der drei Diagonalele-
mente

1

3
(2
∣∣RR̄〉− ∣∣GḠ〉− ∣∣BB̄〉)

1

3
(−
∣∣RR̄〉+ 2

∣∣GḠ〉− ∣∣BB̄〉)
1

3
(−
∣∣RR̄〉− ∣∣GḠ〉+ 2

∣∣BB̄〉) .

(4.27)

Es ist üblich, den S U 2-Zustand

1√
2

(
∣∣RR̄〉− ∣∣GḠ〉) (4.28)

als eine der Wellenfunktionen zu wählen, dieser ergibt sich aus der Differenz
der ersten beiden Zeilen von (4.27). Dann wird aus der Summe

1√
6

(
∣∣RR̄〉+

∣∣GḠ〉− 2
∣∣BB̄〉) (4.29)

die achte Wellenfunktion gebildet. In der Tabelle 4.3 ist die vollständige Zerle-
gung 3⊗3∗ nochmals zusammengefasst. Die gegenüber dem Text auftretenden
Vorzeichenunterschiede entsprechen einer Konvention, die sich als sinnvoll er-
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Tabelle 4.3 Das Singulett (Zeile 1) und das Oktett (Zeilen 2 bis 9) aus Farb-Antifarb-
Zuständen der Gruppe S U 3C

1√
3

(|RR̄〉+ |GḠ〉+ |BB̄〉)

|GB̄〉
|RB̄〉
−|GR̄〉
1√
2

(|GḠ〉 − |RR̄〉)
1√
6

(|RR̄〉+ |GḠ〉 − 2|BB̄〉)
|RḠ〉
−|BR̄〉
|BḠ〉

weisen wird, wenn wir die S U 3-Symmetrie im Sortenraum (u d s) der Quarks
behandeln.

4.1.4 Baryonen als q q q-Zustände

Zur Konstruktion der Farbwellenfunktion von Baryonen müssen wir zunächst
untersuchen, ob in der Produktdarstellung 3⊗ 3⊗ 3 ein Singulett enthalten
ist, da die beobachteten Baryonen natürlich farblos sein müssen. Wir begin-
nen mit dem Produkt von zwei Quarks. Der zugehörige Tensor T i k lässt
sich sofort in zwei Tensoren zerlegen, die symmetrisch bzw. antisymmetrisch
bezüglich einer Indexvertauschung sind:

T ik =
1

2
(T ik + T ki) +

1

2
(T ik − T ki) . (4.30)

Der erste Tensor hat (N 2 +N )/2 linear unabhängige Komponenten, da bei
einem symmetrischen Tensor die oberhalb und unterhalb der Diagonale ste-
henden Elemente identisch sind. Er erfüllt offenbar die Symmetriebedingung
und bildet daher eine irreduzible Darstellung der Dimension

n =
1

2
(N2 +N) (4.31)

unter S U N, während zum zweiten eine irreduzible Darstellung der Dimen-
sion
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n′ =
1

2
(N2 −N) (4.32)

gehört, da er sich ebenfalls nicht weiter reduzieren lässt. In S U 3 erfüllt
sogar der zweite Tensor explizit die Symmetriebedingung. Dies sehen wir
durch einen kleinen Umweg ein. Im Fall der S U 3 ist das Bildungsgesetz des
zweiten Tensors sichtlich mit

Vi =
1

2
εijkT

jk (4.33)

identisch, wobei εi j k der schon in Abschn. 2.2 eingeführte total antisymme-
trische Tensor ist. Hiermit gilt dann z. B. für i =1

V1 =
1

2
(T 23 − T 32) (4.34)

und eine entsprechende Beziehung für i =2,3. Die drei Komponenten bilden
also einen Tensor mit nur einem (unteren) Index und erfüllen daher das Sym-
metrieprinzip. Dieser Trick der Kontraktion der Indizes lässt sich auch bei
komplizierteren Produkten anwenden.

Tensoren mit nur einem Index nennen wir Vektoren. Die besondere Ei-
genschaft, dass der gemäß (4.30) gebildete antisymmetrische Tensor wieder
ein Vektor ist, hat S U 3 mit O 3 gemeinsam. Dort ist dieser Tensor als das
Kreuzprodukt zweier Vektoren bekannt. Denken Sie z. B. an die Komponen-
ten des Drehimpulses, L= r ×p.

Die Darstellung 3⊗ 3 ist nun ausreduziert. Es gilt

3⊗ 3 = 3∗ ⊕ 6 . (4.35)

Ein Singulett lässt sich also aus zwei Quarks nicht bilden. Aber wegen

3⊗ 3∗ = 1⊕ 8 (4.36)

ist sofort klar, dass in 3 ⊗ 3 ⊗ 3 ein Singulett enthalten ist. Mit Hilfe von
(4.33) und (4.22) lässt sich der zugehörige Tensor

T 0
0 = εijkq

iqjqk (4.37)

leicht konstruieren. Farblose Baryonen werden daher durch die S U 3C-
Singulettwellenfunktion
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Tabelle 4.4 Das Singulett (Zeile 1) und Oktett (Zeile 2 bis 9) aus drei Quarks in der
Gruppe S U 3C

1√
6

(|RGB〉 − |RBG〉+ |BRG〉 − |BGR〉+ |GBR〉 − |GRB〉)

1√
2

(|GRG〉 − |GGR〉)
1√
2

(|RRG〉 − |RGR〉)
1√
2

(|GBG〉 − |GGB〉)
1/2(|RBG〉− |RGB〉+ |GBR〉− |GRB〉)

1√
12

(|RGB〉 − |RBG〉+ |GBR〉 − |GRB〉+ 2|BGR〉 − 2|BRG〉)
1√
2

(|RBR〉 − |RRB〉)
1√
2

(|BBG〉 − |BGB〉)
1√
2

(|BBR〉 − |BRB〉)

|1〉 =
1√
6

(|RGB〉 − |RBG〉+ |BRG〉 − |BGR〉+ |GBR〉 − |GRB〉) (4.38)

beschrieben. Sie ist antisymmetrisch bei Vertauschung von zwei beliebigen
Farbindizes und garantiert damit die Erfüllung der im ersten Abschnitt dieses
Kapitels geforderten Bedingung zur Erfüllung des Pauli-Prinzips.

Der Vollständigkeit halber soll noch die komplette Zerlegung der Produkt-
darstellung von drei Quarks in irreduzible Darstellungen angegeben werden.
Das in (4.36) enthaltene Oktett gewinnen wir aus den Zuständen der Tabel-
le 4.3, indem wir entsprechend der Vorschrift (4.33) jede Antifarbe durch die
passende Vertauschung zweier Farben ersetzen, also z. B. R̄ durch G B −B G.
Die Zustände müssen anschließend noch normiert werden. Das Ergebnis ist
in der Tabelle 4.4 angegeben, die der Leser ohne allzu große Schwierigkeiten
nachrechnen können sollte.

Es lässt sich ebenfalls relativ leicht abzählen, dass sich aus den Produk-
ten T i j k = q i q j qk genau zehn Zustände konstruieren lassen, die vollständig
symmetrisch in den oberen Indizes sind. Zunächst gibt es drei Zustände mit
drei identischen Quarks, also |RRR〉, |GGG〉 und |BBB〉. Dann kommen die
Zustände, in denen zwei Quarks identisch sind. Dazu gehört z. B. |RGG〉,
welcher durch Symmetrisierung und Normierung zu

1√
3

(|RGG〉+ |GRG〉+ |GGR〉) (4.39)

wird. Auf diese Art lassen sich sechs Zustände konstruieren. Der zehnte Zu-
stand |RGB〉 ist in allen drei Quarks unterschiedlich und nimmt nach Sym-
metrisierung und Normierung die Gestalt
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Tabelle 4.5 Das Dekuplett aus drei Quarks in der Gruppe S U 3C

|RRR〉
1√
3

(|RRG〉+ |RGR〉+ |GRR〉)
1√
3

(|RGG〉+ |GRG〉+ |GGR〉)
|GGG〉
1√
3

(|RRB〉+ |RBR〉+ |BRR〉)
1√
6

(|RGB〉+ |RBG〉+ |BRG〉+ |BGR〉+ |GBR〉+ |GRB〉)
1√
3

(|GGB〉+ |GBG〉+ |BGG〉)
1√
3

(|RBB〉+ |BRB〉+ |BBR〉)
1√
3

(|GBB〉+ |BGB〉+ |BBG〉)
|BBB〉

1√
6

(|RGB〉+ |RBG〉+ |BRG〉+ |BGR〉+ |GBR〉+ |GRB〉) (4.40)

an. Das Ergebnis ist in Tabelle 4.5 zusammengefasst.
Die 18 Zustände des Produkts 3⊗ 6 folgen offenbar dem Bildungsgesetz

T ijk = qi(qjqk + qkqj) . (4.41)

Um diese Produkte in irreduzible Darstellungen zu zerlegen, wird das De-
kuplett der Tabelle 4.5 abgespalten. Das lässt sich z. B. dadurch erledigen,
dass man eine Liste der 18 Zustände anfertigt. In dieser Liste erkennt der
fleißige Leser sofort, dass die vollständig symmetrischen Zustände der zehn-
dimensionalen Darstellung entweder direkt auftauchen oder durch einfache
Linearkombinationen zu erhalten sind. Die Linearkombinationen werden so
konstruiert, dass sie jeweils orthogonal zueinander sind. Nach Abtrennen des
Dekupletts bleiben acht Zustände übrig. Sie bilden eine alternative Darstel-
lung der Dimension acht und sind in der Tabelle 4.6 – wieder unter Ver-
wendung einer für spätere Zwecke nützlichen Phasenkonvention – ebenfalls
zusammengestellt.

Unter Benutzung von

3⊗ 6 = 8⊕ 10 (4.42)

sind wir nun bei der gesuchten Zerlegung

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 (4.43)

angelangt.
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Tabelle 4.6 Das alternative Oktett aus drei Quarks in der Gruppe S U 3C

1√
6

(|GGR〉+ |GRG〉 − 2|RGG〉)
1√
6

(−|RRG〉 − |RGR〉+ 2|GRR〉)
1√
6

(|GGB〉+ |GBG〉 − 2|BGG〉)
1√
12

(|RGB〉+ |RBG〉+ |GRB〉+ |GBR〉 − 2|BRG〉 − 2|BGR〉)
1√
6

(|RRB〉+ |RBR〉 − 2|BRR〉)
1√
6

(−|BGB〉 − |BBG〉+ 2|GBB〉)
1√
6

(−|BRB〉 − |BBR〉+ 2|RBB〉)
1/2(|GRB〉+ |GBR〉− |RGB〉− |RBG〉)

In 3 ⊗ 3 ⊗ 3 ist also genau ein Singulett enthalten. Daneben können drei
Quarks noch Farboktetts und Dekupletts bilden. Natürlich lassen sich auch
aus drei Antiquarks oder aus Produkten von |qq̄〉, |qqq〉 und |q̄q̄q̄〉 Farb-
singuletts konstruieren. Dies ist z. B.für den Einbau der Kernphysik in das
Quarkmodell sehr wichtig. In S U 3 ist es aber auf keine andere Art und Wei-
se möglich, ein Singulett durch Produkte dreidimensionaler Darstellungen zu
erhalten. Mit der Forderung, dass Hadronen farblos sind, bleiben also nur
zwei fundamentale Möglichkeiten, nämlich |qq̄〉 und |qqq〉, um Hadronen aus
Quarks aufzubauen.

Übungen

4.1 Rechnen Sie die Werte der Tabelle 4.1 nach und überprüfen Sie die
Normierung der λ-Matrizen. Besonders einfach geht das wieder bei
Verwendung algebraischer Programme.

4.2 Benutzen Sie die Tensormethode zur Bestimmung der Darstellungen
eines Quark-Quark- bzw. Quark-Antiquark-Zustandes in S U 2.

4.3 Beweisen Sie durch explizite Konstruktion, dass die unitäre Trans-
formation U1 = e−iΘF1 das Singulett (4.25) invariant lässt.


