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Elementare Quantenelektrodynamaik

Christoph Berger

Einfiihrung

Die Quantenelektrodynamik (QED) wurde zunichst als Theorie der
Wechselwirkung von Elektronen, Positronen und Photonen entwickelt.
Es hat sich aber gezeigt, dass sie die elektromagnetische Wechselwir-
kung aller geladenen Leptonen mit hoher Préazision beschreibt. Da die
Quarks geladene Fermionen sind, lag es nahe, die Formeln der QED auf
Streuprozesse, an denen Quarks beteiligt sind, zu tibertragen. Dariiber
hinaus ist die QED das Modell fiir weitergehende Theorien der Wech-
selwirkung von Fermionen unter Austausch von Bosonen (Kap. 1). Es
ist also klar, dass am Anfang jeder quantitativen Reaktionenlehre in
der Teilchenphysik eine Einfiihrung in die Quantenelektrodynamik er-
forderlich ist. Bei dem hier vorgestellten Zugang zur QED handelt es
sich nicht um eine systematische Begriindung, sondern um eine Bereit-
stellung des bendtigten Handwerkszeugs zur Berechnung von Formeln,
die sich mit dem Experiment vergleichen lassen. Auf solche Vergleiche
und auf die Anwendung der erarbeiteten Ergebnisse lege ich besonde-
ren Wert. Man findet eine ausfiihrliche Behandlung der theoretischen
Grundlagen in vielen Textbiichern der relativistischen Quantentheorie
[Sch61, Jau76], v. a. aber in dem bekannten Buch von Bjorken und Drell
[Bjo90] oder in dem schonen neueren Buch von Peskin und Schroeder
[Pes95).
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3.1 Dirac-Gleichung und Feynman-Regeln

Die relativistische Wellengleichung fiir Fermionen wurde von Dirac gefunden.
Wir beginnen daher im ersten Teil mit einer Diskussion der Dirac-Gleichung
fiir freie Fermionen und untersuchen ihre Losungen im zweiten Abschnitt. Im
dritten Abschnitt werden dann Feynman-Regeln fiir wechselwirkende Teil-
chen anhand des Beispiels der elektromagnetischen Wechselwirkung erléau-
tert. Schlieflich wird im vierten Abschnitt der Versuch unternommen, eine
anschauliche Diskussion der sog. Renormierung durchzufiihren.

3.1.1 Die Dirac-Gleichung

Die nichtrelativistische Quantenmechanik wird bekanntlich durch die Schrédinger-
Gleichung beherrscht. Fiir freie Teilchen ist diese berithmte Gleichung nichts
anderes als die Energie-Impuls-Beziehung

p
—=F 3.1
o (3.1)
in Operatorform
Hy=Ev | (3.2)
wobei der Energieoperator durch
- 0
E=i— 3.3
T (3.3)

definiert ist. Der Hamilton-Operator H ist wegen

p=—-iV (3.4)
in der tiblichen Weise durch

N A

H=—— 3.5

festgelegt, und die Wellenfunktion ¢ héngt hier vom Ortsvektor und der Zeit
ab, 1 — (@, 1).
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Die Dirac-Gleichung entstand historisch aus dem Wunsch, eine relativis-
tische Wellengleichung zu haben, die ebenfalls linear in der Ableitung nach
der Zeit ist,

- 0
rel ;. _
H™) = i (3.6)

Der relativistische Zusammenhang zwischen Energie und Impuls lautet be-
kanntlich

E? =p?+m? | (3.7)

jedoch fiihrt der naheliegende Ansatz

' =/~ A +m? (3.8)

nicht zum gewiinschten Erfolg, da die daraus vielleicht ableitbare Wellenglei-
chung Orts- und Zeitkoordinaten unterschiedlich behandelt. Damit wiirde sie
in jedem Lorentz-System eine andere Form bekommen. Schon wegen dieser
fehlenden relativistischen Kovarianz muss man (3.8) ablehnen.

Dirac wéhlte als linearen Ansatz

H™ = ap+ fm (3.9)

wobel der Koeffizientenvektor

aq
a=|a (3.10)
as

und der Koeffizient 8 noch zu bestimmen sind. Dazu schreiben wir die Di-
racsche Wellengleichung erst einmal explizit an,

. oY oY oY O
_ 7 i — =i— . A1

' (al Oxt T Ox? s ox3 +hmy =1 ot (3:11)
Im néchsten Schritt iterieren wir diese Gleichung, d.h. wir wenden auf die
linke Seite nochmals H™! und auf die rechte Seite i9 /0t an. Dies ergibt
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3 2 3 2
_Z aja; + oo\ 0% Z ‘ N o o, _ O
< 2 > okRton " i:1(alﬁ +Bal)8xi MY = o2’

(3.12)

ij=1

Wir lassen dieses Ergebnis fiir einen Moment auf sich beruhen. Ganz dhnlich
wie beim Ableiten der Schrédinger-Gleichung kann man eine relativistische
Wellengleichung auch direkt aus der Energie-Impuls-Beziehung (3.7) gewin-
nen,

¢ 2
Natiirlich miissen die Losungen % des linearisierten Hamilton-Operators die-
ser Klein-Gordon-Gleichung geniigen.! Dies gibt uns jetzt ein Mittel an die
Hand, die Koeflizienten a; und 5 zu bestimmen. Offenbar ist (3.12) nur dann
identisch mit der Klein-Gordon-Gleichung fiir v, falls

Qi + ooy = 2(5@‘ (314)
gr=1 (3.16)

gilt. An der Nichtvertauschbarkeit der Koeffizienten «; und 3 sieht man so-
fort, dass diese keine Zahlen sein kénnen. Dirac schlug vor, sie als Matrizen
und die Lésungen ¢ als Spaltenvektoren zu behandeln. Das ist gewisserma-
Ken der Preis, den man fiir die Linearisierung der Klein-Gordon-Gleichung
bezahlen muss.

Zunichst untersuchen wir die Eigenschaften dieser Matrizen etwas detail-
lierter. Aus (3.14) folgt ganz analog zur Beziehung (3.16) fiir die c; unmit-
telbar

al=1. (3.17)
Weiter miissen die Koeffizientenmatrizen hermitesch und spurfrei sein. Die

erste Eigenschaft folgt aus der Hermitezitdt des Hamilton-Operators, die
zweite ist schnell bewiesen. Wegen (3.15) und (3.16) gilt

1 Diese Gleichung wurde schon im Abschn. 2.1 bei der Diskussion der Normierungsfaktoren
benutzt.



3 Elementare Quantenelektrodynamik 239

; = —60@6 . (318)

Jetzt wird von beiden Seiten die Spur berechnet. Unter der Spur lassen sich
Matrizen jedoch zyklisch vertauschen, Sp B a; 3 =Sp 32 ;. Dies fiihrt un-
mittelbar zu der Relation Sp a; = —Sp a4, die nur erfiillt sein kann, wenn die
Spur der a-Matrizen verschwindet. Ganz dhnlich verlduft der Beweis fiir 3.

Die Gleichung (3.14) wird durch die Paulischen Spinmatrizen o; erfiillt.
Diese haben wir in Abschn. 2.2.4 diskutiert. Sie lassen sich aber nicht mit den
«; identifizieren, da es keine vierte linear unabhéngige Matrix zur Erfiillung
der Bedingung (3.15) gibt. Elementare algebraische Uberlegungen zeigen nun,
dass die bendtigten Matrizen mindestens die Dimension vier haben miissen.
Demnach sind auch die ¢-Funktionen vierdimensionale Spaltenvektoren. Eine
Standarddarstellung der Matrizen l&sst sich aus den Pauli-Matrizen und der
zweidimensionalen Einheitsmatrix aufbauen:

B= <(1) _01> (3.19)

und

0 ag;
Q; = (Ui 0) 5 (320)

wobei auch die Symbole ,,0¢ und ,,1“ selbst wieder als 2 x 2-Matrizen inter-
pretiert werden miissen.

Um zu einer modernen Schreibweise der Dirac-Gleichung zu gelangen, fiih-
ren wir zunéchst formal die vier y-Matrizen ein. Sie sind durch

0 _
11- _ gai (3.21)

definiert. Aus den Vertauschungsrelationen fiir «; und g lassen sich fiir die
~y# die wichtigen Vertauschungsrelationen

YA A = 29" (3.22)

ableiten. Die eigentlich benotigte vierdimensionale Einheitsmatrix auf der
rechten Seite wurde wieder zur Vereinfachung der Notation weggelassen. Der
metrische Tensor g"* wurde schon in Abschn. 2.3.2 eingefiihrt.

Die v-Matrizen mit einem unteren Index (also v, ) sind &hnlich wie normale
Vierervektoren durch

Yo = gwﬂ/# (3'23)
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definiert. Der Vollstandigkeit halber sei auch noch die explizite Darstellung
der 4% angegeben,

vi:( 0 ‘”) : (3.24)

—0; 0

Mit Hilfe dieser neuen Matrizen nimmt die Bezichung (3.11) die Gestalt

9
Ox3

0 0 9]
(.0 1 2 3
+ 4 + - =0 3.25
1<7 90 "V et T a2 T >¢ my ( )
an, worin ganz im Sinne einer konsistenten relativistischen Notation 20 = ¢
benutzt wurde. Unter Verwendung der beliebten dagger-Abkiirzung fiir das

Produkt von «-Matrizen und Vierervektoren

d="a, (3.26)

wird diese Gleichung schliefslich unter Beachtung von

0
O = Dot (3.27)
id—m)p=0 (3.28)
bzw.
(= m)b =0 (3.29)

umgeformt.? Das Hut-Symbol soll nochmal darauf hinweisen, dass hier der
Impulsoperator gemeint ist. An den letzten beiden Schreibweisen der Dirac-
Gleichung fiir freie Fermionen der Masse m meint man, ihre relativistische
Kovarianz sozusagen mit Héanden greifen zu koénnen, da v* p,, wie ein Skalar-
produkt von Vierervektoren aussieht. Es muss aber gesagt werden, dass die
~v* keinen Vierervektor bilden, sondern in jedem Lorentz-System die gleiche
oben angegebene Darstellung haben. Der Beweis der relativistischen Kovari-
anz der Dirac-Gleichung ist daher auch etwas komplizierter [Bjo90].

2 Die Eindeutschung englischer Fachworter bleibt immer problematisch. Am Ende ist es
bequemer, dagger oder slash zu benutzen als z. B. das schon fast poetisch klingende Wort
ZFeynman-Dolch*.
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Vertiefung

241

Algebraische Manipulationen von Ausdriicken mit y-Matrizen sind zu
einer hohen Kunst entwickelt worden. Als einfachstes Beispiel betrach-

ten wir 4 §:

a4 ¥ =y"v"aub, = (2¢"" —v"v")ayb, ,

(3.30)

wobei der letzte Schritt mit Hilfe von (3.22) erfolgte. Dieses Ergebnis

wird unmittelbar zu

dyy=2a-b-pd

mit dem Spezialfall

¢£¢£:a-a=a2

umgeformt.

(3.31)

(3.32)

3.1.2 Losungen der freien Dirac-Gleichung

Wir beginnen mit der Losung fiir ein ruhendes Elektron (Fermion). Fiir p =0
wird die Dirac-Gleichung besonders einfach,

e
1’yoa¢—md}:0.

(3.33)

Durch Einsetzen ldsst sich verifizieren, dass die vier linear unabhéngigen

Funktionen

—imt

11 = NNs

e+imt

13 = NNs

O OO OO0 O

12 = N Ng

4 = NNg

O OO OO Oo

—imt

(3.34)

e+imt

Losungen dieser Gleichung sind. Sie bilden eine Basis, aus der jede beliebige
Losung der Dirac-Gleichung fiir ruhende Elektronen durch Linearkombina-
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tion gewonnen werden kann. Die vierdimensionalen Spaltenvektoren heiffen
Spinoren. Die Faktoren N und Ng sind Normierungskonstanten, die wir gleich
diskutieren werden. Die ersten beiden Losungen geniigen der Eigenwertglei-
chung

Ewl,z = m¢1,2 » (3~35)

wahrend die letzten beiden Losungen

Etpsq = —maps 4 (3.36)

erfiillen. Es gibt also offenbar zwei Losungen positiver und zwei Lésungen
negativer Energie!

Die zu einem bestimmten Energiewert gehorenden Losungen lassen sich
zwanglos den beiden moglichen Spineinstellungen j; ==41/2 entlang der z-
Achse im Ruhesystem des Fermions zuordnen. Die formale Begriindung geht
davon aus, dass die Matrizen 7; = X;/2 mit

= (‘(’J f) (3.37)

die Vertauschungsrelationen (2.108) erfiillen. Solche Beweise verlangen immer
wieder das Umformen von Ausdriicken, die Produkte von - und o-Matrizen
enthalten. Die Manipulation dieser Matrizen gewinnt enorm an Anschaulich-
keit, wenn sie in einer expliziten Darstellung durchgefiihrt wird. Dazu eignen
sich algebraische Programme hervorragend.?

Durch Anwenden der Matrix X3 auf die Lésungen 1, z. B.

2z =1, (3.38)

findet man sofort die richtige physikalische Interpretation der 1-Funktionen:
1 ist eine Losung positiver Energie mit j3=1/2, ¥ eine Losung positiver
Energie mit j3 = —1/2, 13 eine Losung negativer Energie mit j3 =1/2 und ¢4
eine Losung negativer Energie mit j3 = —1/2. Die fiir diese kurze Einfiihrung
zu umfangreiche Behandlung der Dirac-Gleichung fiir Elektronen in einem
Magnetfeld zeigt, dass das magnetische Moment der Elektronen e/2 m, also
ein Bohrsches Magneton, betragt. Fiir den sog. g-Faktor der Fermionen fin-

3 In dem MAPLE-Paket heppack.txt werden u. a. Darstellungen dieser Matrizen und der
Dirac-Spinoren zur Verfiigung gestellt. Die Lehrbeispiele diracl.txt und dirac2.txt sollen
die im Text behandelten Beweise und Ableitungen erweitern und vertiefen. Der so wichtige
Spinoperator der Dirac-Theorie wird z.B. in diracl.mws diskutiert. Zum Herunterladen
der Routinen folgen Sie den Hinweisen auf das Buch auf meiner Homepage http://mozart.
physik.rwth-aachen.de/
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det man daher g =2. Die Tatsache, dass der Spin der Elektronen mit dem
richtigen magnetischen Moment in einer relativistisch korrekten Wellenglei-
chung enthalten ist, wird immer eine der schonsten Entdeckungen der Physik
bleiben. Leser, die noch nicht so vertraut mit den Begriffen magnetisches Mo-
ment und g-Faktor sind, finden wieder eine sehr gute Einfiithrung im Buch
von J.D. Jackson [Jac98].

Losungen fiir Fermionen, die sich mit einem beliebigen Impuls p bewe-
gen, findet man aus den ruhenden Loésungen durch Lorentz-Transformation
[Bjo90]. Im einzelnen gilt

Y1 = Nuje P® o = Nuge P? (3.39)
g = NujetiPe 1y = NuvgetP® :

Hierin wurde wie iiblich

p-x=plz, = Et —px (3.40)

benutzt. E ist positiv definit, steht also hier und in den folgenden Formeln als
Abkiirzung fiir +4/p2 + m?2. Die Spinoren « und v gehoren zu den Losungen
positiver bzw. negativer Energie. u; beschreibt demnach z.B. ein Elektron
positiver Energie und mit dem Impuls p, dessen Spin entlang der z-Achse
des Ruhesystems die Komponente j3 =+1/2 hat; vy beschreibt ein Elektron
negativer Energie mit dem Impuls p und j3=+1/2.

Im Abschn. 1.2.1 haben wir die Diracsche Interpretation der Zustédnde
negativer Energie diskutiert: Das Fehlen eines Elektrons im See negativer
Energie ist gleichbedeutend mit der Anwesenheit eines Positrons mit positiver
Energie. Es ist jetzt an der Zeit, Feynmans neue Interpretation der Losun-
gen mit negativer Energie aus Abschn. 1.2.5 wieder aufzugreifen. Sie hat den
Vorteil, sich gleichermafien fiir Fermionen (Dirac-Gleichung) wie fiir Bosonen
(Klein-Gordon-Gleichung) verwenden zu lassen. Feynman lasst nur Losungen
positiver Energie, die in der Zeit vorwirts laufen p* = (F, p), und Losungen
negativer Energie, die in der Zeit riickwérts laufen p'* = (— E, — p), zu. Wie
iiblich gehoren die Losungen positiver Energie zu den Teilchen; die genannten
Zusténde mit negativer Energie beschreiben jetzt aber Antiteilchen mit dem
Viererimpuls —p’#, d. h. also positiver Energie und einem vorwérts gerichte-
ten Impuls +p, wie in der Abb. 3.1 erldutert wird. Die Spinoren v werden
in einer ganz bestimmten Weise den Antiteilchen zugeordnet: vy gehort jetzt
zu einem Antiteilchen mit Impuls p und der Spinkomponente im Ruhesys-
tem j3=—1/2, wihrend vy ein Antiteilchen mit Impuls p und j3=+1/2
beschreibt. (Auch in der Diracschen Interpretation entspricht ein Loch mit
der Ladung —e und Spin abwirts im See negativer Energie einem Teilchen
positiver Ladung und positiver Energie mit Spin aufwérts.) Diese Zuordnung
kommt anschaulich in der viel benutzten Notation
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uy = u(p, 1/2)
a1 @41
v = v(p,1/2)

zum Ausdruck, wobei das Symbol p als Kurzform fiir £ und p steht. Die
explizite Darstellung der Spinoren wird durch die beiden Formelsétze

1 0
0 1
u; = Ng I ug = Ng p_ (3.42)
E+m E+m
P+ —P=
E+m E+m
und
Pz p—
E+m E+m
P+ —DPz
vy, = Ng EJ{m vy = Ng E'6m (3.43)
0 1

festgelegt, in denen die Abkiirzung

D+ = Dy £ipy (3.44)

mit der interessanten Eigenschaft

pp— =1+, (3.45)

verwendet wurde. Durch Einsetzen (auch z.B. mit Hilfe algebraischer Pro-
gramme) lasst sich verifizieren, dass diese Spinoren « und v die Relationen

(p—m)u=0 (3.46)

und

(p+m)v=0 (3.47)

erfiillen, wobei wieder die Abkiirzung s =~"p, benutzt wurde. Diese Be-
ziehungen lassen sich als Dirac-Gleichungen im Spinorraum auffassen. Sie
konnen durch Anwendung der Dirac-Gleichung auf die Losungen (3.39) ab-
geleitet werden.

Den Spinornormierungsfaktor Ng wahlen wir zu
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positive  negative
Energie Energie

Abb. 3.1 Fermion- und Antifermionlinien. Die Pfeile geben die Richtung des Impulses an.
Die Zeitachse verlauft von unten nach oben. Wenn der Pfeil nach unten deutet, handelt es
sich um ein Fermion negativer Energie, das riickwérts lauft. Dies ist gleichbedeutend mit
einem vorwarts laufenden Antifermion positiver Energie

Ns=VE+m . (3.48)

Aus der in der Dirac-Theorie wichtigen Definition der adjungierten (,querge-
strichenen®) -Funktion

) =9y’ (3.49)

folgt fiir die Spinoren

a=u"" =000 (3.50)

und daraus mit (3.48) die Normierungsrelationen

UiUj = 2m5ij (351)

bzw.

vivj = —2m5ij . (352)

Von vielen Autoren, so z. B. im Buch von Bjorken und Drell [Bjo90], wird

Ns =/ (E+m)/2m (3.53)

gewéhlt. Damit sind die Spinoren ,auf 1“ normiert. Die Form (3.48) hat aber
den Vorteil, dass die Normierung der Wellenfunktionen fiir Bosonen und Fer-
mionen identisch wird, was zu den gleichen Faktoren fiir den Zusammen-
hang zwischen Matrixelement und Wirkungsquerschnitt fiihrt (siche dazu
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Abschn. 2.1). Der Vierervektor des Teilchenstroms ist ja in der Diracschen
Theorie durch

j# = @(xvthﬂw(%t) (354)

definiert [Bjo90], und deswegen erhilt man fiir die Teilchendichte (mit j° = p)

p=1dTy (3.55)
und weiter z. B. fiir die Losung 1,
p=N?ulu, = N2F . (3.56)

Das gleiche Resultat ergibt sich auch fiir die anderen drei Losungen. Die
Bedingung

/ pdV = 1 (3.57)

lasst sich damit also durch

1

N =
V2EV

(3.58)

wie bei den Bosonen erfiillen.

Der Spin des bewegten Elektrons ist natiirlich nicht entlang der z-Richtung
quantisiert, sondern entlang einer Richtung n’, die aus der z-Achse des Ru-
hesystems durch die entsprechende Lorentz-Transformation hervorgeht. Eine
Ausnahme liegt vor, falls der Lorentz-Boost vom Ruhesystem in das Labor-
system entlang der z-Achse lduft. In diesem Fall liegen Flugrichtung und
Quantisierungsachse des Teilchens auf der z-Achse des Laborsystems. Die
Spinoren beschreiben nun offenbar spezielle Helizitatszustédnde |p, A =£1/2)
mit p in der z-Achse. Fermionen und Antifermionen mit der Helizitat +1/2
bezeichnen wir als rechtshdndig, solche mit A\=—1/2 als linkshindig. Ein
Elektron mit A=+1/2 bekommt also das Symbol eg. Zur Darstellung der
Helizitéatszustdnde im Spinorraum gilt fiir Teilchen

ur = [p. A = —1/2) (3.59)

und fiir die Antiteilchen
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L = |p7)‘: _1/2>

vR = |p, A = +1/2) . (3.60)

An die Stelle der Indizes 1,2 treten nun die Indizes R, L fiir rechtshindige
bzw. linkshéndige Teilchen. Zunéachst geben wir die explizite Darstellung der
Spinoren an, die zu Helizitdtszustdnden mit Impulsen entlang der z-Achse
gehoren. Es gilt offenbar fiir die Fermionen

1 0
0 1
UR — Ng |p| ur, = NS 0 (3.61)
Em —|pl
O E+m
und fiir die Antifermionen
E‘f‘m —(I)p\
oL = Ng ‘f vn = Ns | Fom | (3.62)
0 1

Diese Spinoren werden besonders einfach im Grenzfall m/FE — 0, d. h. ver-
schwindender Masse (Neutrinos!) oder sehr hoher Energie der Fermionen,

0
UR = NS ur, = NS é (363)

SO = O

-1

mit Ny = v/E. Der Normierungsfaktor kann also sehr grofe Werte annehmen.
Im gleichen Grenzfall erhdlt man fiir die Losungen der Antifermionen

1 0
0 -1

v = NS 1 VR — NS 0 (3.64)
0 1

Da die Helizitatszustdnde aufserordentlich angenehm fiir praktische Rechnun-

gen sind, moéchten wir im folgenden Darstellungen fiir beliebige Quantisie-

rungsrichtungen ableiten. Dazu miissen wir allerdings etwas weiter ausholen.
Mit Hilfe der Pauli-Spinoren

X1= (é) X2 = (?) (3.65)
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lassen sich die Spinoren (3.42) und (3.43) in die kompakte Form

wy = NS( Sar ) (3.66)

E+m X7

und

9P
vy = Ny <E+ XT) (3.67)
Xr

bringen. Der Index r kann naturgeméfs die Werte 1,2 annehmen. Zusténde
mit dem Impuls p im Laborsystem und einer beliebigen Quantisierungsachse
n im Ruhesystem (siehe Abb. 3.2) lassen sich genauso anschreiben, nur muss
man dann die Spinoren X, in (3.66) und (3.67) durch gedrehte Spinoren x/.
ersetzen. Durch die Drehung

R = R.(6)R,(6) (3.68)

wird ein beliebiger Vektor aus der z-Achse eines Koordinatensystems in die
Richtung n gedreht (Abb. 3.2). Um mit den Phasenkonventionen von Jacob
und Wick [Jac59] iibereinzustimmen, benutzen wir die zu (3.68) dquivalente
Drehung

R=R.(0)Ry(O)R=(~9) . (3.69)

Die Elemente D:fm der zugehorigen Matrix U(R) im Raum der Spinoren
haben wir schon in (2.144) ausgerechnet,

cos(0/2) —e ?sin(0/2)

U(R) = (ei¢sin(9/2) cos(©/2) > ’ (3.70)

woraus die Darstellung der gedrehten Pauli-Spinoren fiir ,,Spin auf*

, _( cos(6/2)
X1 = (ei¢ sin(©/2) (871)
bzw. fir ,,Spin ab“

X = <ecz;§g/(f)/ 2)) (3.72)



3 Elementare Quantenelektrodynamik 249
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Abb. 3.2 Die Quantisierungsachse n im Ruhesystem eines Teilchens

folgt. Wenn wir jetzt den Lorentz-Boost entlang dem Richtungsvektor n im
Ruhesystem des Teilchens durchfiihren, erhalten wir Helizitdtszustéinde der
Dirac-Theorie fiir Teilchen bzw. Antiteilchen, die mit dem Impuls |p| in der
Richtung ©, ¢ des Laborsystems laufen. Thre explizite Darstellung wird durch
Einsetzen der gedrehten Pauli-Spinoren in (3.66) und (3.67) abgeleitet, also

UR = U1
U, = u2
(3.73)
Vv, = U1
VR = V2 .

Im Grenzfall m/E — 0 lautet ihre Form fiir die Fermionen

! !
ug = Ng (X}> - Ns( XQ,) (3.74)
X1 —X2

und fiir die Antifermionen
X =X
o, = Ns< }) , UR= Ns< ,2) : (3.75)
X1 X2

Die zuletzt gewonnenen Helizitdtszustdande von masselosen Teilchen haben
eine sehr hiibsche Eigenschaft, sie sind namlich Eigenzustdnde der Matrix

7 =iy (3.76)

Dargestellt durch die 2 x 2-Matrizen 0 und 1 hat diese Matrix die Form
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v = <(1) (1)) : (3.77)

unabhingig von der Stellung des Index, v° = 5. Die Eigenwertgleichungen
lauten

~YSur = ugr ~oup, = —up, (3.78)

bzw.

YR = —vR YPoL = v, . (3.79)

Masselose Fermionen bilden also Eigenzustinde zum Chiralitéitsoperator? °

mit den Eigenwerten +1.

Spinoren von massiven Teilchen sind nicht Eigenzustdnde der Chiralitét,
aber die Anwendung von 7% auf diese Spinoren ist ebenfalls interessant. Durch
explizite Konstruktion iiberzeugen wir uns davon, dass +° einen Teilchenspi-
nor positiver Helizitédt in den Spinor eines Antiteilchens negativer Helizitdt
(und umgekehrt) verwandelt, also z. B.

Yug = v, . (3.80)

Anhand von (3.74) und (3.75) kann man diese Identitét fiir masselose Teilchen
unmittelbar ablesen.

Vertiefung
Der Leser sollte sich mit den Eigenschaften der Matrix 7° vertraut ma-
chen. Es gilt offenbar (’y5)2 =1, %" =~% und

Py =1 (3.81)
Die letzte Relation wird zum Beweis von
Yo = —¢py° (3.82)

benutzt. Hierin ist v eine beliebige Losung der Dirac-Gleichung.

Aus +° lassen sich die Operatoren

4 Die Bezeichnung geht auf das griechische Wort x €t p (cheir) fiir ,Hand* zuriick.
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144°

I+ =
2

(3.83)

gewinnen. Da die Helizitétszustdnde (3.74) und (3.75) masseloser Fermionen
und Antifermionen Eigenzustinde zu ~° sind, erfiillen sie trivialerweise die
Relationen

HJruR = UR HJruL =

I up, = ug, I ur =0 s (384)

bzw.

II7vg = vR I v, =0

H+UL = VL H+UR =0. (3'85)
Die IT* geniigen offenbar den Vollstéindigkeitsrelationen von Projektionsope-
ratoren

ot+mn- =1 o+n+ =0 om+m+ = o+ (3.86)

und erzeugen daher auch bei Anwendung auf eine beliebige Losung der Dirac-
Gleichung Zusténde definierter Chiralitdit

Iy=R, HT¢v=L. (3.87)

Die chiralen Zustdnde R und L haben die Chiralitdt +1 bzw. —1, wie man
durch Anwendung von ~° auf die Definitionsgleichung (3.87) sofort sieht.
Auch diese Zustande werden oft als rechtshéndig bzw. linkshéndig bezeichnet.
Im Grenzfall m/FE — 0 ist die Chiralitét eines Teilchens gleich seiner Helizitét
und die Chiralitdt eines Antiteilchens gleich dem Negativen seiner Helizitét.
Wir sollten noch einen Moment bei diesem Thema verweilen. Wie wir
gerade gelernt haben, ldsst sich jede Losung der Dirac-Gleichung geméfs

Y=R+1L (3.88)

zerlegen. Offenbar sind aber diese einzelnen Zustdnde keine Losungen der
Dirac-Gleichung. Denn mit (R, L) = IT*%) und (3.81) beweist man sofort

iv"0,R =mL (3.89)

und entsprechend fiir L



252 Christoph Berger
iv8, L = mR . (3.90)

Nur im Grenzfall m —0 — oder genauer m/E — 0 — erfiillen diese Wellen-
funktionen die Dirac-Gleichung

V9, R=0  iy"0,L =0 . (3.91)

Wenn man eine physikalische Theorie hat, in der nur Losungen der Dirac-
Gleichung mit einer bestimmten Chiralitdt vorkommen, bedeutet dies not-
wendigerweise, dass die Masse verschwindet und nur ein Helizitdtszustand
ibrig bleibt. Wir haben in Abschn. 2.5 die Paritédtsverletzung so interpre-
tiert, dass Neutrinos immer linkshéindig und Antineutrinos immer rechtshén-
dig sind. Dies heifst ebenfalls m, =0. Auch anschaulich ist es so, dass nur
fiir ein masseloses Teilchen die Aussage, es habe negative Helizitét, lorent-
zinvariant ist. Um ein Neutrino rechtshéndig zu sehen, miisste ndmlich ein
Beobachter sich in einem Bezugssystem befinden, das sich schneller als das
Neutrino bewegt. Dies ist aber fiir m, =0 nicht mdéglich.

Jetzt zu den Stromen! Zu einer bestimmten Loésung 1 der freien Dirac-
Gleichung kann man immer einen Vektorstrom

3 = oy (3.92)
und einen Axialvektorstrom
i = iy (3.93)
bilden. Die Anwendung der Zerlegung (3.88) ergibt
Jy = Ry"R+ L' L (3.94)

und entsprechend fiir den Axialvektorstrom

jh = B"°R+ Ly*y°L = Ry*R — Iy"L . (3.95)

Diese Strome verkniipfen nur Losungsanteile gleicher Chiralitdt miteinander,
da die Terme mit unterschiedlicher Chiralitdt verschwinden, z. B.

Ry"L =0 . (3.96)

Beweis
Wir benutzen die Identitat
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Ry"L =TT gy T~ (3.97)

Mit Hilfe von (3.81) und (3.82) lisst sich die rechte Seite zu yy* T+ 1T~ 1)
umformen und verschwindet daher aufgrund der Orthogonalitdt der
Projektionsoperatoren.

Die diskutierten Stréme sind invariant gegen die Ersetzung von ¢ durch

W= (3.98)

Man spricht von einer chiralen Invarianz der Stréme. Der Beweis erfolgt
einfach durch Einsetzen unter Benutzung von (3.81). Wenn wir jetzt fiir
1) Teilchenspinoren einer bestimmten Helizitét einsetzen, wird dadurch
eine Symmetrie zwischen rechtshindigen Teilchen und linkshdndigen
Antiteilchen (und umgekehrt) fiir Theorien etabliert, in denen die Dich-
te der Wechselwirkungsenergie (der Hamilton-Operator) aus Produkten
dieser Strome mit Feldern besteht.

Anstelle der Vektor- und Axialvektorstréme arbeitet man héufig direkt mit
den sog. linkshéndigen und rechtshéndigen Strémen Ly*L und Ry*R. Aus
den Definitionsgleichungen (3.94) und (3.95) folgt sofort die Umrechnung

= 5 - 38) (399
Ny 1 o o 1
it =50+ 38 - (3.100)

Neben den Stromen ist auch noch die Norm 1) interessant. Sie verkniipft
nur Losungsanteile unterschiedlicher Chiralitdt miteinander,
Y = RL+ LR . (3.101)

Die Norm ist offenbar nicht chiral-invariant, sondern es gilt

Y ==y (3.102)

und daher treten in einer chiral-invarianten Theorie Produkte wie Y1) nicht
auf. Da in der Energiedichte Massenterme die Gestalt mi1 haben, kann eine
chiral invariante Theorie nur fiir masselose Fermionen formuliert werden.
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Vertiefung

Als Paritétsoperator P der Diracschen Theorie kénnen wir 4% identifi-
zieren. Man kann leicht {iberpriifen, dass die Anwendung dieses Opera-
tors mit den in Abschn. 2.5.1 getroffenen Definitionen iibereinstimmt.
Zunéchst einmal belegt die Anwendung des Operators auf die Zusténde
ruhender Fermionen in (3.34) die innere Paritét n=1 fiir Teilchen und
1= —1 fiir Antiteilchen. Die Anwendung auf den Helizitdtszustand upg
ergibt

cos(0/2) cos(0/2)
e'? sin(6/2) el? sin(0/2
"N acos(@//Q) =Ns —acos(Q//2)) (£-102)
ae'? sin(©/2) —ael? sin(0/2)

mit a=|p|/(E + m). Die rechte Seite ist aber bis auf einen Phasen-
faktor identisch mit dem Spinor uj(—p), wenn man beachtet, dass die
Paritdtstransformation in Polarkoordinaten in der Ersetzung @ — 7w — ©
und ¢ — 7+ ¢ besteht. Das in (2.316) festgelegte Verhalten wird also
im Spinorraum korrekt wiedergegeben.

Der parititstransformierte Vektorstrom hat die Form j# = 1)y0~#~%).
Durch Anwendung der Vertauschungsrelationen der y-Matrizen sieht
man unmittelbar, dass j° sich nicht #ndert, wihrend die rdumlichen
Komponenten j* gespiegelt werden. Das umgekehrte Verhalten findet
man fiir den Axialvektorstrom.

Nun noch ein paar Uberlegungen zur Stromerhaltung. Auch fiir den Vek-
torstrom (3.92) gilt der klassische Erhaltungssatz der Elektrodynamik

Bujli(z) =0, (3.104)

dessen rdumliches Integral mit der Ladungserhaltung identifiziert werden
kann. (Das Argument z steht als Abkiirzung fiir die vier Komponenten des
Vektors z#.) Der Beweis der Stromerhaltung gelingt sehr schnell unter der
Voraussetzung, dass ¢ eine Losung der freien Dirac-Gleichung ist. Aufierdem
muss man noch beachten, dass die Dirac-Gleichung fiir adjungierte Spinoren

PiP@+m)=0 (3.105)
lautet, wobei die Differentiation nach links wirkt. Die Stromerhaltung bleibt

auch giiltig, wenn v und 1) ebene Wellen zu unterschiedlichen Impulsen p und
p’ bilden. In der Sprache der Feldtheorie ist dann " das Ubergangsma-
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trixelement des Vektorstromoperators. Wenn wir nun einen Vektorstrom aus
Spinoren 1,19 bilden, die zu Teilchen verschiedener Masse gehoren, geht
(3.104) in

Oudly = i(ma — ma)ihripy (3.106)

iiber. Der Vektorstrom ist also nur erhalten, wenn beide Teilchen die gleiche
Masse haben. Umgekehrt folgt fiir die Divergenz des Axialvektorstroms sofort

Ouih = ilma +ma) 17 es (3.107)

Fiir diesen Strom kann ein Erhaltungssatz demnach nur im Grenzfall ver-
schwindender Massen formuliert werden. Die zusétzliche Matrix 4° in (3.93)
hat offenbar dramatische Konsequenzen.



