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Elementare Quantenelektrodynamik

Christoph Berger

Einführung
Die Quantenelektrodynamik (QED) wurde zunächst als Theorie der
Wechselwirkung von Elektronen, Positronen und Photonen entwickelt.
Es hat sich aber gezeigt, dass sie die elektromagnetische Wechselwir-
kung aller geladenen Leptonen mit hoher Präzision beschreibt. Da die
Quarks geladene Fermionen sind, lag es nahe, die Formeln der QED auf
Streuprozesse, an denen Quarks beteiligt sind, zu übertragen. Darüber
hinaus ist die QED das Modell für weitergehende Theorien der Wech-
selwirkung von Fermionen unter Austausch von Bosonen (Kap. 1). Es
ist also klar, dass am Anfang jeder quantitativen Reaktionenlehre in
der Teilchenphysik eine Einführung in die Quantenelektrodynamik er-
forderlich ist. Bei dem hier vorgestellten Zugang zur QED handelt es
sich nicht um eine systematische Begründung, sondern um eine Bereit-
stellung des benötigten Handwerkszeugs zur Berechnung von Formeln,
die sich mit dem Experiment vergleichen lassen. Auf solche Vergleiche
und auf die Anwendung der erarbeiteten Ergebnisse lege ich besonde-
ren Wert. Man findet eine ausführliche Behandlung der theoretischen
Grundlagen in vielen Textbüchern der relativistischen Quantentheorie
[Sch61, Jau76], v. a. aber in dem bekannten Buch von Bjorken und Drell
[Bjo90] oder in dem schönen neueren Buch von Peskin und Schroeder
[Pes95].
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3.1 Dirac-Gleichung und Feynman-Regeln

Die relativistische Wellengleichung für Fermionen wurde von Dirac gefunden.
Wir beginnen daher im ersten Teil mit einer Diskussion der Dirac-Gleichung
für freie Fermionen und untersuchen ihre Lösungen im zweiten Abschnitt. Im
dritten Abschnitt werden dann Feynman-Regeln für wechselwirkende Teil-
chen anhand des Beispiels der elektromagnetischen Wechselwirkung erläu-
tert. Schließlich wird im vierten Abschnitt der Versuch unternommen, eine
anschauliche Diskussion der sog. Renormierung durchzuführen.

3.1.1 Die Dirac-Gleichung

Die nichtrelativistische Quantenmechanik wird bekanntlich durch die Schrödinger-
Gleichung beherrscht. Für freie Teilchen ist diese berühmte Gleichung nichts
anderes als die Energie-Impuls-Beziehung

p2

2m
= E (3.1)

in Operatorform

Ĥψ = Êψ , (3.2)

wobei der Energieoperator durch

Ê = i
∂

∂t
(3.3)

definiert ist. Der Hamilton-Operator Ĥ ist wegen

p̂ = −i∇ (3.4)

in der üblichen Weise durch

Ĥ = − ∆

2m
(3.5)

festgelegt, und die Wellenfunktion ψ hängt hier vom Ortsvektor und der Zeit
ab, ψ=ψ(x , t).
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Die Dirac-Gleichung entstand historisch aus dem Wunsch, eine relativis-
tische Wellengleichung zu haben, die ebenfalls linear in der Ableitung nach
der Zeit ist,

Ĥrelψ = i
∂

∂t
ψ . (3.6)

Der relativistische Zusammenhang zwischen Energie und Impuls lautet be-
kanntlich

E2 = p 2 +m2 , (3.7)

jedoch führt der naheliegende Ansatz

Ĥrel =
√
−∆+m2 (3.8)

nicht zum gewünschten Erfolg, da die daraus vielleicht ableitbare Wellenglei-
chung Orts- und Zeitkoordinaten unterschiedlich behandelt. Damit würde sie
in jedem Lorentz-System eine andere Form bekommen. Schon wegen dieser
fehlenden relativistischen Kovarianz muss man (3.8) ablehnen.

Dirac wählte als linearen Ansatz

Ĥrel = αp̂+ βm , (3.9)

wobei der Koeffizientenvektor

α =

α1

α2

α3

 (3.10)

und der Koeffizient β noch zu bestimmen sind. Dazu schreiben wir die Di-
racsche Wellengleichung erst einmal explizit an,

−i

(
α1

∂ψ

∂x1
+ α2

∂ψ

∂x2
+ α3

∂ψ

∂x3

)
+ βmψ = i

∂ψ

∂t
. (3.11)

Im nächsten Schritt iterieren wir diese Gleichung, d. h. wir wenden auf die
linke Seite nochmals Ĥrel und auf die rechte Seite i ∂ /∂ t an. Dies ergibt
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−
3∑

i,j=1

(
αjαi + αiαj

2

)
∂2ψ

∂xi∂xj
− im

3∑
i=1

(αiβ + βαi)
∂ψ

∂xi
+ β2m2ψ = −∂

2ψ

∂t2
.

(3.12)

Wir lassen dieses Ergebnis für einen Moment auf sich beruhen. Ganz ähnlich
wie beim Ableiten der Schrödinger-Gleichung kann man eine relativistische
Wellengleichung auch direkt aus der Energie-Impuls-Beziehung (3.7) gewin-
nen,

−∂
2φ

∂t2
= −∆φ+m2φ . (3.13)

Natürlich müssen die Lösungen ψ des linearisierten Hamilton-Operators die-
ser Klein-Gordon-Gleichung genügen.1 Dies gibt uns jetzt ein Mittel an die
Hand, die Koeffizienten αi und β zu bestimmen. Offenbar ist (3.12) nur dann
identisch mit der Klein-Gordon-Gleichung für ψ, falls

αiαj + αjαi = 2δij (3.14)

αiβ + βαi = 0 (3.15)

β2 = 1 (3.16)

gilt. An der Nichtvertauschbarkeit der Koeffizienten αi und β sieht man so-
fort, dass diese keine Zahlen sein können. Dirac schlug vor, sie als Matrizen
und die Lösungen ψ als Spaltenvektoren zu behandeln. Das ist gewisserma-
ßen der Preis, den man für die Linearisierung der Klein-Gordon-Gleichung
bezahlen muss.

Zunächst untersuchen wir die Eigenschaften dieser Matrizen etwas detail-
lierter. Aus (3.14) folgt ganz analog zur Beziehung (3.16) für die αi unmit-
telbar

α2
i = 1 . (3.17)

Weiter müssen die Koeffizientenmatrizen hermitesch und spurfrei sein. Die
erste Eigenschaft folgt aus der Hermitezität des Hamilton-Operators, die
zweite ist schnell bewiesen. Wegen (3.15) und (3.16) gilt

1 Diese Gleichung wurde schon im Abschn. 2.1 bei der Diskussion der Normierungsfaktoren
benutzt.
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αi = −βαiβ . (3.18)

Jetzt wird von beiden Seiten die Spur berechnet. Unter der Spur lassen sich
Matrizen jedoch zyklisch vertauschen, Sp β αi β=Sp β2 αi. Dies führt un-
mittelbar zu der Relation Sp αi =−Sp αi, die nur erfüllt sein kann, wenn die
Spur der α-Matrizen verschwindet. Ganz ähnlich verläuft der Beweis für β.

Die Gleichung (3.14) wird durch die Paulischen Spinmatrizen σi erfüllt.
Diese haben wir in Abschn. 2.2.4 diskutiert. Sie lassen sich aber nicht mit den
αi identifizieren, da es keine vierte linear unabhängige Matrix zur Erfüllung
der Bedingung (3.15) gibt. Elementare algebraische Überlegungen zeigen nun,
dass die benötigten Matrizen mindestens die Dimension vier haben müssen.
Demnach sind auch die ψ-Funktionen vierdimensionale Spaltenvektoren. Eine
Standarddarstellung der Matrizen lässt sich aus den Pauli-Matrizen und der
zweidimensionalen Einheitsmatrix aufbauen:

β =

(
1 0
0 −1

)
(3.19)

und

αi =

(
0 σi
σi 0

)
, (3.20)

wobei auch die Symbole „0“ und „1“ selbst wieder als 2× 2-Matrizen inter-
pretiert werden müssen.

Um zu einer modernen Schreibweise der Dirac-Gleichung zu gelangen, füh-
ren wir zunächst formal die vier γ-Matrizen ein. Sie sind durch

γ0 = β
γi = βαi

(3.21)

definiert. Aus den Vertauschungsrelationen für αi und β lassen sich für die
γµ die wichtigen Vertauschungsrelationen

γµγν + γνγµ = 2gµν (3.22)

ableiten. Die eigentlich benötigte vierdimensionale Einheitsmatrix auf der
rechten Seite wurde wieder zur Vereinfachung der Notation weggelassen. Der
metrische Tensor gµ ν wurde schon in Abschn. 2.3.2 eingeführt.

Die γ-Matrizen mit einem unteren Index (also γν) sind ähnlich wie normale
Vierervektoren durch

γν = gνµγ
µ (3.23)
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definiert. Der Vollständigkeit halber sei auch noch die explizite Darstellung
der γi angegeben,

γi =

(
0 σi
−σi 0

)
. (3.24)

Mit Hilfe dieser neuen Matrizen nimmt die Beziehung (3.11) die Gestalt

i

(
γ0

∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)
ψ −mψ = 0 (3.25)

an, worin ganz im Sinne einer konsistenten relativistischen Notation x 0 = t
benutzt wurde. Unter Verwendung der beliebten dagger -Abkürzung für das
Produkt von γ-Matrizen und Vierervektoren

6a = γµaµ (3.26)

wird diese Gleichung schließlich unter Beachtung von

∂µ =
∂

∂xµ
(3.27)

zu

(i 6∂ −m)ψ = 0 (3.28)

bzw.

(6 p̂−m)ψ = 0 (3.29)

umgeformt.2 Das Hut-Symbol soll nochmal darauf hinweisen, dass hier der
Impulsoperator gemeint ist. An den letzten beiden Schreibweisen der Dirac-
Gleichung für freie Fermionen der Masse m meint man, ihre relativistische
Kovarianz sozusagen mit Händen greifen zu können, da γµ pµ wie ein Skalar-
produkt von Vierervektoren aussieht. Es muss aber gesagt werden, dass die
γµ keinen Vierervektor bilden, sondern in jedem Lorentz-System die gleiche
oben angegebene Darstellung haben. Der Beweis der relativistischen Kovari-
anz der Dirac-Gleichung ist daher auch etwas komplizierter [Bjo90].

2 Die Eindeutschung englischer Fachwörter bleibt immer problematisch. Am Ende ist es
bequemer, dagger oder slash zu benutzen als z. B. das schon fast poetisch klingende Wort
„Feynman-Dolch“.
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Vertiefung
Algebraische Manipulationen von Ausdrücken mit γ-Matrizen sind zu
einer hohen Kunst entwickelt worden. Als einfachstes Beispiel betrach-
ten wir 6a 6b:

6a 6b = γµγνaµbν = (2gµν − γνγµ)aµbν , (3.30)

wobei der letzte Schritt mit Hilfe von (3.22) erfolgte. Dieses Ergebnis
wird unmittelbar zu

6a 6b = 2a · b− 6b 6a (3.31)

mit dem Spezialfall

6a 6a = a · a = a2 (3.32)

umgeformt.

3.1.2 Lösungen der freien Dirac-Gleichung

Wir beginnen mit der Lösung für ein ruhendes Elektron (Fermion). Für p =0
wird die Dirac-Gleichung besonders einfach,

iγ0
∂

∂t
ψ −mψ = 0 . (3.33)

Durch Einsetzen lässt sich verifizieren, dass die vier linear unabhängigen
Funktionen

ψ1 = NNS


1
0
0
0

 e−imt ψ2 = NNS


0
1
0
0

 e−imt

ψ3 = NNS


0
0
1
0

 e+imt ψ4 = NNS


0
0
0
1

 e+imt

(3.34)

Lösungen dieser Gleichung sind. Sie bilden eine Basis, aus der jede beliebige
Lösung der Dirac-Gleichung für ruhende Elektronen durch Linearkombina-
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tion gewonnen werden kann. Die vierdimensionalen Spaltenvektoren heißen
Spinoren. Die Faktoren N und N S sind Normierungskonstanten, die wir gleich
diskutieren werden. Die ersten beiden Lösungen genügen der Eigenwertglei-
chung

Êψ1,2 = mψ1,2 , (3.35)

während die letzten beiden Lösungen

Êψ3,4 = −mψ3,4 (3.36)

erfüllen. Es gibt also offenbar zwei Lösungen positiver und zwei Lösungen
negativer Energie!

Die zu einem bestimmten Energiewert gehörenden Lösungen lassen sich
zwanglos den beiden möglichen Spineinstellungen j 3 =±1/2 entlang der z -
Achse im Ruhesystem des Fermions zuordnen. Die formale Begründung geht
davon aus, dass die Matrizen ̂i = Σi/2 mit

Σi =

(
σi 0
0 σi

)
(3.37)

die Vertauschungsrelationen (2.108) erfüllen. Solche Beweise verlangen immer
wieder das Umformen von Ausdrücken, die Produkte von γ- und σ-Matrizen
enthalten. Die Manipulation dieser Matrizen gewinnt enorm an Anschaulich-
keit, wenn sie in einer expliziten Darstellung durchgeführt wird. Dazu eignen
sich algebraische Programme hervorragend.3

Durch Anwenden der Matrix Σ3 auf die Lösungen ψi, z. B.

Σ3ψ1 = ψ1 , (3.38)

findet man sofort die richtige physikalische Interpretation der ψ-Funktionen:
ψ1 ist eine Lösung positiver Energie mit j 3 =1/2, ψ2 eine Lösung positiver
Energie mit j 3 =−1/2, ψ3 eine Lösung negativer Energie mit j 3 =1/2 und ψ4

eine Lösung negativer Energie mit j 3 =−1/2. Die für diese kurze Einführung
zu umfangreiche Behandlung der Dirac-Gleichung für Elektronen in einem
Magnetfeld zeigt, dass das magnetische Moment der Elektronen e/2m, also
ein Bohrsches Magneton, beträgt. Für den sog. g-Faktor der Fermionen fin-

3 In dem MAPLE-Paket heppack.txt werden u. a. Darstellungen dieser Matrizen und der
Dirac-Spinoren zur Verfügung gestellt. Die Lehrbeispiele dirac1.txt und dirac2.txt sollen
die im Text behandelten Beweise und Ableitungen erweitern und vertiefen. Der so wichtige
Spinoperator der Dirac-Theorie wird z. B. in dirac1.mws diskutiert. Zum Herunterladen
der Routinen folgen Sie den Hinweisen auf das Buch auf meiner Homepage http://mozart.
physik.rwth-aachen.de/
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det man daher g =2. Die Tatsache, dass der Spin der Elektronen mit dem
richtigen magnetischen Moment in einer relativistisch korrekten Wellenglei-
chung enthalten ist, wird immer eine der schönsten Entdeckungen der Physik
bleiben. Leser, die noch nicht so vertraut mit den Begriffen magnetisches Mo-
ment und g-Faktor sind, finden wieder eine sehr gute Einführung im Buch
von J.D. Jackson [Jac98].

Lösungen für Fermionen, die sich mit einem beliebigen Impuls p bewe-
gen, findet man aus den ruhenden Lösungen durch Lorentz-Transformation
[Bjo90]. Im einzelnen gilt

ψ1 = Nu1e−ip·x ψ2 = Nu2e−ip·x

ψ3 = Nv1e+ip·x ψ4 = Nv2e+ip·x .
(3.39)

Hierin wurde wie üblich

p · x = pµxµ = Et− px (3.40)

benutzt. E ist positiv definit, steht also hier und in den folgenden Formeln als
Abkürzung für +

√
p 2 +m2. Die Spinoren u und v gehören zu den Lösungen

positiver bzw. negativer Energie. u1 beschreibt demnach z. B. ein Elektron
positiver Energie und mit dem Impuls p, dessen Spin entlang der z -Achse
des Ruhesystems die Komponente j 3 =+1/2 hat; v1 beschreibt ein Elektron
negativer Energie mit dem Impuls p und j 3 =+1/2.

Im Abschn. 1.2.1 haben wir die Diracsche Interpretation der Zustände
negativer Energie diskutiert: Das Fehlen eines Elektrons im See negativer
Energie ist gleichbedeutend mit der Anwesenheit eines Positrons mit positiver
Energie. Es ist jetzt an der Zeit, Feynmans neue Interpretation der Lösun-
gen mit negativer Energie aus Abschn. 1.2.5 wieder aufzugreifen. Sie hat den
Vorteil, sich gleichermaßen für Fermionen (Dirac-Gleichung) wie für Bosonen
(Klein-Gordon-Gleichung) verwenden zu lassen. Feynman lässt nur Lösungen
positiver Energie, die in der Zeit vorwärts laufen pµ=(E,p), und Lösungen
negativer Energie, die in der Zeit rückwärts laufen p′µ=(−E, −p), zu. Wie
üblich gehören die Lösungen positiver Energie zu den Teilchen; die genannten
Zustände mit negativer Energie beschreiben jetzt aber Antiteilchen mit dem
Viererimpuls −p′µ, d. h. also positiver Energie und einem vorwärts gerichte-
ten Impuls +p, wie in der Abb. 3.1 erläutert wird. Die Spinoren v werden
in einer ganz bestimmten Weise den Antiteilchen zugeordnet: v1 gehört jetzt
zu einem Antiteilchen mit Impuls p und der Spinkomponente im Ruhesys-
tem j 3 =−1/2, während v2 ein Antiteilchen mit Impuls p und j 3 =+1/2
beschreibt. (Auch in der Diracschen Interpretation entspricht ein Loch mit
der Ladung −e und Spin abwärts im See negativer Energie einem Teilchen
positiver Ladung und positiver Energie mit Spin aufwärts.) Diese Zuordnung
kommt anschaulich in der viel benutzten Notation
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u1 = u(p, 1/2)
u2 = u(p,−1/2)
v1 = v(p,−1/2)
v2 = v(p, 1/2)

(3.41)

zum Ausdruck, wobei das Symbol p als Kurzform für E und p steht. Die
explizite Darstellung der Spinoren wird durch die beiden Formelsätze

u1 = NS


1
0
pz

E+m
p+
E+m

 u2 = NS


0
1
p−
E+m
−pz
E+m

 (3.42)

und

v1 = NS


pz

E+m
p+
E+m

1
0

 v2 = NS


p−
E+m
−pz
E+m

0
1

 (3.43)

festgelegt, in denen die Abkürzung

p± = px ± ipy (3.44)

mit der interessanten Eigenschaft

p+p− = p2x + p2y (3.45)

verwendet wurde. Durch Einsetzen (auch z. B. mit Hilfe algebraischer Pro-
gramme) lässt sich verifizieren, dass diese Spinoren u und v die Relationen

( 6p−m)u = 0 (3.46)

und

(6p+m)v = 0 (3.47)

erfüllen, wobei wieder die Abkürzung 6 p= γµpµ benutzt wurde. Diese Be-
ziehungen lassen sich als Dirac-Gleichungen im Spinorraum auffassen. Sie
können durch Anwendung der Dirac-Gleichung auf die Lösungen (3.39) ab-
geleitet werden.

Den Spinornormierungsfaktor N S wählen wir zu
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t

positive

Energie

negative

Energie

Abb. 3.1 Fermion- und Antifermionlinien. Die Pfeile geben die Richtung des Impulses an.
Die Zeitachse verläuft von unten nach oben. Wenn der Pfeil nach unten deutet, handelt es
sich um ein Fermion negativer Energie, das rückwärts läuft. Dies ist gleichbedeutend mit
einem vorwärts laufenden Antifermion positiver Energie

NS =
√
E +m . (3.48)

Aus der in der Dirac-Theorie wichtigen Definition der adjungierten („querge-
strichenen“) ψ-Funktion

ψ̄ = ψ†γ0 (3.49)

folgt für die Spinoren

ū = u†γ0 v̄ = v†γ0 (3.50)

und daraus mit (3.48) die Normierungsrelationen

ūiuj = 2mδij (3.51)

bzw.

v̄ivj = −2mδij . (3.52)

Von vielen Autoren, so z. B. im Buch von Bjorken und Drell [Bjo90], wird

NS =
√

(E +m)/2m (3.53)

gewählt. Damit sind die Spinoren „auf 1“ normiert. Die Form (3.48) hat aber
den Vorteil, dass die Normierung der Wellenfunktionen für Bosonen und Fer-
mionen identisch wird, was zu den gleichen Faktoren für den Zusammen-
hang zwischen Matrixelement und Wirkungsquerschnitt führt (siehe dazu
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Abschn. 2.1). Der Vierervektor des Teilchenstroms ist ja in der Diracschen
Theorie durch

jµ = ψ̄(x, t)γµψ(x, t) (3.54)

definiert [Bjo90], und deswegen erhält man für die Teilchendichte (mit j 0 = ρ)

ρ = ψ†ψ (3.55)

und weiter z. B. für die Lösung ψ1

ρ = N2u†1u1 = N22E . (3.56)

Das gleiche Resultat ergibt sich auch für die anderen drei Lösungen. Die
Bedingung

∫
ρdV = 1 (3.57)

lässt sich damit also durch

N =
1√

2EV
(3.58)

wie bei den Bosonen erfüllen.
Der Spin des bewegten Elektrons ist natürlich nicht entlang der z -Richtung

quantisiert, sondern entlang einer Richtung n ′, die aus der z -Achse des Ru-
hesystems durch die entsprechende Lorentz-Transformation hervorgeht. Eine
Ausnahme liegt vor, falls der Lorentz-Boost vom Ruhesystem in das Labor-
system entlang der z -Achse läuft. In diesem Fall liegen Flugrichtung und
Quantisierungsachse des Teilchens auf der z -Achse des Laborsystems. Die
Spinoren beschreiben nun offenbar spezielle Helizitätszustände |p,λ=±1/2〉
mit p in der z -Achse. Fermionen und Antifermionen mit der Helizität +1/2
bezeichnen wir als rechtshändig, solche mit λ=−1/2 als linkshändig. Ein
Elektron mit λ=+1/2 bekommt also das Symbol eR. Zur Darstellung der
Helizitätszustände im Spinorraum gilt für Teilchen

uR = |p, λ = +1/2〉
uL = |p, λ = −1/2〉

(3.59)

und für die Antiteilchen
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vL = |p, λ = −1/2〉
vR = |p, λ = +1/2〉 .

(3.60)

An die Stelle der Indizes 1,2 treten nun die Indizes R, L für rechtshändige
bzw. linkshändige Teilchen. Zunächst geben wir die explizite Darstellung der
Spinoren an, die zu Helizitätszuständen mit Impulsen entlang der z -Achse
gehören. Es gilt offenbar für die Fermionen

uR = NS


1
0
|p|
E+m

0

 uL = NS


0
1
0
−|p|
E+m

 (3.61)

und für die Antifermionen

vL = NS


|p|
E+m

0
1
0

 vR = NS


0
−|p|
E+m

0
1

 . (3.62)

Diese Spinoren werden besonders einfach im Grenzfall m/E→ 0, d. h. ver-
schwindender Masse (Neutrinos!) oder sehr hoher Energie der Fermionen,

uR = NS


1
0
1
0

 uL = NS


0
1
0
−1

 (3.63)

mit NS =
√
E. Der Normierungsfaktor kann also sehr große Werte annehmen.

Im gleichen Grenzfall erhält man für die Lösungen der Antifermionen

vL = NS


1
0
1
0

 vR = NS


0
−1
0
1

 . (3.64)

Da die Helizitätszustände außerordentlich angenehm für praktische Rechnun-
gen sind, möchten wir im folgenden Darstellungen für beliebige Quantisie-
rungsrichtungen ableiten. Dazu müssen wir allerdings etwas weiter ausholen.

Mit Hilfe der Pauli-Spinoren

χ1 =

(
1

0

)
, χ2 =

(
0

1

)
(3.65)
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lassen sich die Spinoren (3.42) und (3.43) in die kompakte Form

ur = NS

(
χr
σp
E+mχr

)
(3.66)

und

vr = NS

( σp
E+mχr
χr

)
(3.67)

bringen. Der Index r kann naturgemäß die Werte 1,2 annehmen. Zustände
mit dem Impuls p im Laborsystem und einer beliebigen Quantisierungsachse
n im Ruhesystem (siehe Abb. 3.2) lassen sich genauso anschreiben, nur muss
man dann die Spinoren χr in (3.66) und (3.67) durch gedrehte Spinoren χ′r
ersetzen. Durch die Drehung

R = Rz(φ)Ry(Θ) (3.68)

wird ein beliebiger Vektor aus der z -Achse eines Koordinatensystems in die
Richtung n gedreht (Abb. 3.2). Um mit den Phasenkonventionen von Jacob
und Wick [Jac59] übereinzustimmen, benutzen wir die zu (3.68) äquivalente
Drehung

R = Rz(φ)Ry(Θ)Rz(−φ) . (3.69)

Die Elemente D1/2
m′m der zugehörigen Matrix U (R) im Raum der Spinoren

haben wir schon in (2.144) ausgerechnet,

U(R) =

(
cos(Θ/2) −e−iφ sin(Θ/2)

eiφ sin(Θ/2) cos(Θ/2)

)
, (3.70)

woraus die Darstellung der gedrehten Pauli-Spinoren für „Spin auf“

χ′1 =

(
cos(Θ/2)

eiφ sin(Θ/2)

)
(3.71)

bzw. für „Spin ab“

χ′2 =

(
−e−iφ sin(Θ/2)

cos(Θ/2)

)
(3.72)
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Θ

Φ

n

z

y

x

Abb. 3.2 Die Quantisierungsachse n im Ruhesystem eines Teilchens

folgt. Wenn wir jetzt den Lorentz-Boost entlang dem Richtungsvektor n im
Ruhesystem des Teilchens durchführen, erhalten wir Helizitätszustände der
Dirac-Theorie für Teilchen bzw. Antiteilchen, die mit dem Impuls |p| in der
Richtung Θ,φ des Laborsystems laufen. Ihre explizite Darstellung wird durch
Einsetzen der gedrehten Pauli-Spinoren in (3.66) und (3.67) abgeleitet, also

uR = u1

uL = u2

vL = v1

vR = v2 .

(3.73)

Im Grenzfall m/E→ 0 lautet ihre Form für die Fermionen

uR = NS

(
χ′1
χ′1

)
, uL = NS

(
χ′2
−χ′2

)
(3.74)

und für die Antifermionen

vL = NS

(
χ′1
χ′1

)
, vR = NS

(
−χ′2
χ′2

)
. (3.75)

Die zuletzt gewonnenen Helizitätszustände von masselosen Teilchen haben
eine sehr hübsche Eigenschaft, sie sind nämlich Eigenzustände der Matrix

γ5 = iγ0γ1γ2γ3 . (3.76)

Dargestellt durch die 2× 2-Matrizen 0 und 1 hat diese Matrix die Form



250 Christoph Berger

γ5 =

(
0 1
1 0

)
, (3.77)

unabhängig von der Stellung des Index, γ5 = γ5. Die Eigenwertgleichungen
lauten

γ5uR = uR γ5uL = −uL (3.78)

bzw.

γ5vR = −vR γ5vL = vL . (3.79)

Masselose Fermionen bilden also Eigenzustände zum Chiralitätsoperator4 γ5
mit den Eigenwerten ±1.

Spinoren von massiven Teilchen sind nicht Eigenzustände der Chiralität,
aber die Anwendung von γ5 auf diese Spinoren ist ebenfalls interessant. Durch
explizite Konstruktion überzeugen wir uns davon, dass γ5 einen Teilchenspi-
nor positiver Helizität in den Spinor eines Antiteilchens negativer Helizität
(und umgekehrt) verwandelt, also z. B.

γ5uR = vL . (3.80)

Anhand von (3.74) und (3.75) kann man diese Identität für masselose Teilchen
unmittelbar ablesen.

Vertiefung
Der Leser sollte sich mit den Eigenschaften der Matrix γ5 vertraut ma-
chen. Es gilt offenbar (γ5)

2 =1, γ5† = γ5 und

γ5γµ = −γµγ5 . (3.81)

Die letzte Relation wird zum Beweis von

γ5ψ = −ψ̄γ5 (3.82)

benutzt. Hierin ist ψ eine beliebige Lösung der Dirac-Gleichung.

Aus γ5 lassen sich die Operatoren

4 Die Bezeichnung geht auf das griechische Wort χ ε ι ρ (cheir) für „Hand“ zurück.
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Π± =
1± γ5

2
(3.83)

gewinnen. Da die Helizitätszustände (3.74) und (3.75) masseloser Fermionen
und Antifermionen Eigenzustände zu γ5 sind, erfüllen sie trivialerweise die
Relationen

Π+uR = uR Π+uL = 0
Π−uL = uL Π−uR = 0 ,

(3.84)

bzw.

Π−vR = vR Π−vL = 0
Π+vL = vL Π+vR = 0 .

(3.85)

Die Π± genügen offenbar den Vollständigkeitsrelationen von Projektionsope-
ratoren

Π+ +Π− = 1 Π±Π∓ = 0 Π±Π± = Π± (3.86)

und erzeugen daher auch bei Anwendung auf eine beliebige Lösung der Dirac-
Gleichung Zustände definierter Chiralität

Π+ψ = R , Π−ψ = L . (3.87)

Die chiralen Zustände R und L haben die Chiralität +1 bzw. −1, wie man
durch Anwendung von γ5 auf die Definitionsgleichung (3.87) sofort sieht.
Auch diese Zustände werden oft als rechtshändig bzw. linkshändig bezeichnet.
Im Grenzfall m/E→ 0 ist die Chiralität eines Teilchens gleich seiner Helizität
und die Chiralität eines Antiteilchens gleich dem Negativen seiner Helizität.

Wir sollten noch einen Moment bei diesem Thema verweilen. Wie wir
gerade gelernt haben, lässt sich jede Lösung der Dirac-Gleichung gemäß

ψ = R+ L (3.88)

zerlegen. Offenbar sind aber diese einzelnen Zustände keine Lösungen der
Dirac-Gleichung. Denn mit (R,L)=Π±ψ und (3.81) beweist man sofort

iγµ∂µR = mL (3.89)

und entsprechend für L
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iγµ∂µL = mR . (3.90)

Nur im Grenzfall m→ 0 – oder genauer m/E→ 0 – erfüllen diese Wellen-
funktionen die Dirac-Gleichung

iγµ∂µR = 0 iγµ∂µL = 0 . (3.91)

Wenn man eine physikalische Theorie hat, in der nur Lösungen der Dirac-
Gleichung mit einer bestimmten Chiralität vorkommen, bedeutet dies not-
wendigerweise, dass die Masse verschwindet und nur ein Helizitätszustand
übrig bleibt. Wir haben in Abschn. 2.5 die Paritätsverletzung so interpre-
tiert, dass Neutrinos immer linkshändig und Antineutrinos immer rechtshän-
dig sind. Dies heißt ebenfalls mν =0. Auch anschaulich ist es so, dass nur
für ein masseloses Teilchen die Aussage, es habe negative Helizität, lorent-
zinvariant ist. Um ein Neutrino rechtshändig zu sehen, müsste nämlich ein
Beobachter sich in einem Bezugssystem befinden, das sich schneller als das
Neutrino bewegt. Dies ist aber für mν =0 nicht möglich.

Jetzt zu den Strömen! Zu einer bestimmten Lösung ψ der freien Dirac-
Gleichung kann man immer einen Vektorstrom

jµV = ψ̄γµψ (3.92)

und einen Axialvektorstrom

jµA = ψ̄γµγ5ψ (3.93)

bilden. Die Anwendung der Zerlegung (3.88) ergibt

jµV = RγµR+ LγµL (3.94)

und entsprechend für den Axialvektorstrom

jµA = Rγµγ5R+ Lγµγ5L = RγµR− LγµL . (3.95)

Diese Ströme verknüpfen nur Lösungsanteile gleicher Chiralität miteinander,
da die Terme mit unterschiedlicher Chiralität verschwinden, z. B.

RγµL = 0 . (3.96)

Beweis
Wir benutzen die Identität
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RγµL = Π+ψγµΠ−ψ . (3.97)

Mit Hilfe von (3.81) und (3.82) lässt sich die rechte Seite zu ψγµΠ+Π−ψ
umformen und verschwindet daher aufgrund der Orthogonalität der
Projektionsoperatoren.
Die diskutierten Ströme sind invariant gegen die Ersetzung von ψ durch

ψ′ = γ5ψ . (3.98)

Man spricht von einer chiralen Invarianz der Ströme. Der Beweis erfolgt
einfach durch Einsetzen unter Benutzung von (3.81). Wenn wir jetzt für
ψ Teilchenspinoren einer bestimmten Helizität einsetzen, wird dadurch
eine Symmetrie zwischen rechtshändigen Teilchen und linkshändigen
Antiteilchen (und umgekehrt) für Theorien etabliert, in denen die Dich-
te der Wechselwirkungsenergie (der Hamilton-Operator) aus Produkten
dieser Ströme mit Feldern besteht.

Anstelle der Vektor- und Axialvektorströme arbeitet man häufig direkt mit
den sog. linkshändigen und rechtshändigen Strömen L̄γµL und R̄γµR. Aus
den Definitionsgleichungen (3.94) und (3.95) folgt sofort die Umrechnung

jµL =
1

2
(jµV − j

µ
A) (3.99)

jµR =
1

2
(jµV + jµA) . (3.100)

Neben den Strömen ist auch noch die Norm ψ̄ψ interessant. Sie verknüpft
nur Lösungsanteile unterschiedlicher Chiralität miteinander,

ψ̄ψ = RL+ LR . (3.101)

Die Norm ist offenbar nicht chiral-invariant, sondern es gilt

ψ̄′ψ′ = −ψ̄ψ (3.102)

und daher treten in einer chiral-invarianten Theorie Produkte wie ψ̄ψ nicht
auf. Da in der Energiedichte Massenterme die Gestalt mψ̄ψ haben, kann eine
chiral invariante Theorie nur für masselose Fermionen formuliert werden.
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Vertiefung
Als Paritätsoperator P der Diracschen Theorie können wir γ0 identifi-
zieren. Man kann leicht überprüfen, dass die Anwendung dieses Opera-
tors mit den in Abschn. 2.5.1 getroffenen Definitionen übereinstimmt.
Zunächst einmal belegt die Anwendung des Operators auf die Zustände
ruhender Fermionen in (3.34) die innere Parität η=1 für Teilchen und
η=−1 für Antiteilchen. Die Anwendung auf den Helizitätszustand uR
ergibt

γ0NS


cos(Θ/2)

eiφ sin(Θ/2)
a cos(Θ/2)
aeiφ sin(Θ/2)

 = NS


cos(Θ/2)

eiφ sin(Θ/2)
−a cos(Θ/2)
−aeiφ sin(Θ/2)

 (3.103)

mit a = |p|/(E +m). Die rechte Seite ist aber bis auf einen Phasen-
faktor identisch mit dem Spinor uL(−p), wenn man beachtet, dass die
Paritätstransformation in Polarkoordinaten in der ErsetzungΘ→π−Θ
und φ→π+φ besteht. Das in (2.316) festgelegte Verhalten wird also
im Spinorraum korrekt wiedergegeben.
Der paritätstransformierte Vektorstrom hat die Form jµ = ψ̄γ0γµγ0ψ.
Durch Anwendung der Vertauschungsrelationen der γ-Matrizen sieht
man unmittelbar, dass j 0 sich nicht ändert, während die räumlichen
Komponenten j i gespiegelt werden. Das umgekehrte Verhalten findet
man für den Axialvektorstrom.

Nun noch ein paar Überlegungen zur Stromerhaltung. Auch für den Vek-
torstrom (3.92) gilt der klassische Erhaltungssatz der Elektrodynamik

∂µj
µ
V(x) = 0 , (3.104)

dessen räumliches Integral mit der Ladungserhaltung identifiziert werden
kann. (Das Argument x steht als Abkürzung für die vier Komponenten des
Vektors xµ.) Der Beweis der Stromerhaltung gelingt sehr schnell unter der
Voraussetzung, dass ψ eine Lösung der freien Dirac-Gleichung ist. Außerdem
muss man noch beachten, dass die Dirac-Gleichung für adjungierte Spinoren

ψ̄(i 6∂ +m) = 0 (3.105)

lautet, wobei die Differentiation nach links wirkt. Die Stromerhaltung bleibt
auch gültig, wenn ψ und ψ̄ ebene Wellen zu unterschiedlichen Impulsen p und
p′ bilden. In der Sprache der Feldtheorie ist dann ψ̄γµψ das Übergangsma-
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trixelement des Vektorstromoperators. Wenn wir nun einen Vektorstrom aus
Spinoren ψ1,ψ2 bilden, die zu Teilchen verschiedener Masse gehören, geht
(3.104) in

∂µj
µ
V = i(m1 −m2)ψ̄1ψ2 (3.106)

über. Der Vektorstrom ist also nur erhalten, wenn beide Teilchen die gleiche
Masse haben. Umgekehrt folgt für die Divergenz des Axialvektorstroms sofort

∂µj
µ
A = i(m1 +m2)ψ̄1γ

5ψ2 . (3.107)

Für diesen Strom kann ein Erhaltungssatz demnach nur im Grenzfall ver-
schwindender Massen formuliert werden. Die zusätzliche Matrix γ5 in (3.93)
hat offenbar dramatische Konsequenzen.


