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Die Streumatriz und thre
Symmetrien

Christoph Berger

Einfiihrung

Mit Hilfe des Konzepts der Streumatrix S lassen sich Reaktionen der
Quantenmechanik in sehr allgemeiner Form beschreiben. Wenn man
eine Theorie zur Berechnung der Matrixelemente zur Hand hat, inter-
essiert besonders der Zusammenhang zwischen diesen Matrixelementen
und den physikalischen Observablen wie dem Wirkungsquerschnitt und
der Zerfallsrate. Damit wollen wir uns zunéchst beschéftigen. Unab-
héngig von einer spezifischen Theorie muss die S-Matrix aber gewissen
Symmetriebedingungen geniigen, die allein ausreichen, die Form des
Wirkungsquerschnitts festzulegen. Das bekannteste Beispiel ist der Zu-
sammenhang zwischen Teilchenspins und Winkelverteilung. Daher wird
im Anschluss an die Formeln fiir Wirkungsquerschnitte und Zerfallsra-
ten das Symmetriekonzept vorgestellt. Die anschlieffenden Abschnitte
behandeln die Symmetrien der Streumatrix und die daraus folgenden
experimentellen Konsequenzen.

2.1 Die Streumatrix

Die Idee der Streumatrix fithren wir ganz pragmatisch am Beispiel eines
Streuexperimentes zwischen zwei einlaufenden und zwei auslaufenden Teil-
chen (Abb. 2.1) ein. Am besten halten wir uns immer das Beispiel der 7 p-
Streuung vor Augen. Das Pion-Nukleon-System vor der Streuung beschreiben
wir durch den quantenmechanischen Zustandsvektor |7). In [i) (i = initial)
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Py P

Abb. 2.1 Allgemeines Diagramm einer Zwei-Korper-Streureaktion 1+ 2 — 3 + 4. Als Bei-
spiel wird in diesem Abschnitt die Pion-Proton-Streuung betrachtet, # +p —xw+p

sind also alle Quantenzahlen des Systems zur Zeit ¢t — —oc enthalten. Zur
Zeit t — +o00 sei das System im Zustand |i'). Der Ubergang wird durch den
Streuoperator S beschrieben:

i’y = Si) . (2.1)

Der Detektor prapariert aus allen moglichen in |i') enthaltenen Zustdnden
einen bestimmten Endzustand |f) (f = final) heraus. Die Wahrscheinlichkeit-
samplitude, |f) in |i’) zu finden, ist durch das Skalarprodukt

(f1i') = (f1Si) = Spi (2.2)

also durch die Matrixelemente des S-Operators, gegeben.
In |¢') sind natiirlich auch die ohne Wechselwirkung durchlaufenden Zu-
stdnde enthalten, wir kbnnen daher einen Reaktionsoperator R iiber

S=1+R (2.3)

einfithren. Auf diese Weise wird S in zwei Anteile zerlegt, von denen nur
einer (R) den einlaufenden Zustand |i) &ndert. GemaR einer hiufig benutz-
ten Konvention definieren wir die Ubergangsamplitude oder Streuamplitude
T, durch Abspalten weiterer Faktoren von Ry, = (f|R]| ). Diese Amplitude
enthélt die gesamte Dynamik des Prozesses. Falls man eine Theorie der be-
trachteten Reaktion hat, erlauben die zu den Feynman-Graphen gehoérenden
Rechenvorschriften die Berechnung von T'f;. Der Zusammenhang mit Ry; ist
durch

Ry; = —i(27)* N1 NaN3Nad* (p1 + p2 — ps — pa) T (2.4)
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festgelegt. Hierin sind p,, die Viererimpulse der beteiligten Teilchen (n =1,2,3,4)
und N,, die Normierungsfaktoren ihrer Wellenfunktionen.

Das Symbol 6% bezeichnet das Produkt von vier Diracschen é-Funktionen
mit jeweils einer Komponente der Viererimpulse als Argument. Damit wird
explizit die Energie-Impuls-Erhaltung im Prozess zum Ausdruck gebracht.
Dies wird klar, wenn man sich nochmal an die Eigenschaften dieser Funktion
erinnert. Fiir den interessierten Leser enthélt der Anhang zu diesem Abschnitt
eine Zusammenstellung der wichtigsten Definitionen und Rechenregeln.

2.1.1 Wirkungsquerschnitte und Streuamplitude

Zur weiteren theoretischen Behandlung unseres Streuexperimentes stellen wir
uns einen Kasten mit dem Volumen V, der Linge Az und dem Querschnitt A
vor. In seiner Mitte liege das Target-Proton, und wéhrend des Zeitintervalls T
trete ein Pion in den Kasten ein. Es handelt sich bei diesem Kasten um das
target der Abb. 1.18, aber mit nur noch einem Proton als Inhalt. Das zugeho-
rige Reaktionsdiagramm ist in Abb. 2.1 angegeben. Die abgeleiteten Formeln
gelten zunéchst fiir alle Reaktionen mit zwei einlaufenden und zwei auslaufen-
den Teilchen, also z. B. fiir die elastische Streuung (1.112) und die inelastische
Reaktion (1.118). Angaben von Winkeln und Impulskomponenten beziehen
sich auf ein Koordinatensystem, dessen z-Achse in Richtung des einlaufenden
Pions liegt. Zur einfacheren Handhabung sehen wir zunéchst vom Spin des
Protons ab und behandeln alle Teilchen als Bosonen.

In unserem Gedankenexperiment ist ng =1/ V. Das einlaufende Pion habe
die Geschwindigkeit |v1]. Da im Zeitintervall T ein Pion im Kasten sein soll,
ist Nin = T|v1|/Az und daher ldsst sich (1.123) in

VAN

do = ——
T|’l)1|

(2.5)

umformen. Jetzt muss dN¢ berechnet werden. In der hier betrachteten Kon-
figuration mit jeweils einem Pion und einem Proton ist dN¢ gleich der Wahr-
scheinlichkeit fiir die Streuung des Pions. Zu ihrer Berechnung benutzen wir
die ,,goldene Regel“ der Quantenmechanik fiir den Ubergang in ein Intervall
von dicht beieinander liegenden Endzustdnden:

dN¢ = |Ryi|? - (Zahl der Endzustiinde) . (2.6)

Ein Teilchen in einem Kasten mit dem Volumen V und mit Impulsen zwischen
p und p +dp kann
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_ Vd3p

A2 = 53

(2.7)

Zusténde einnehmen, da man nach Fermi das Volumen des Phasenraumes
(also V' d3p) in Zellen der Groke h3 = (27 h)? aufteilen muss. Eine genauere
Begriindung dieser Abzéhlung findet sich in den Lehrbiichern der Quanten-
mechanik oder Kernphysik, z. B. in [Bet07]. Fiir die untersuchte Streureaktion
gelangen wir so zu

dN¢ = \Rfi|2W (21)

Ein Vergleich mit (2.4) zeigt, dass in |Ry; |* das Quadrat einer d-Funktion
enthalten ist. Das sieht nun wirklich geféhrlich aus, aber mit Hilfe der im

Anhang zu diesem Abschnitt abgeleiteten Formeln (2.79) und (2.80) ldsst
sich in einer Dimension

3 3
Vd P3 Vd Pa (28)
2w

| 2

[6(w)]* = 8(w)3(0) (2.9)

ausnutzen.! Jetzt wird noch 6(0) durch (2.82) ersetzt. In der Verallgemeine-
rung auf vier Dimensionen gilt daher die Bezichung

vT
§)? = 4 2.10
(0 = Gyt (210)
womit schlieflich die wichtige Beziehung
|Rpi|? = VT(21)*6* (p1 + p2 — p3 — pa) (N1 Na N3 Ny)? | T (2.11)

zwischen |Ry; | und | T'y; | festgelegt wird.

Von der nichtrelativistischen Quantenmechanik sind wir gewohnt, fiir die
Normierungskonstanten N, ebener Wellen in einem Kasten 1/ VV anzu-
setzen. In der relativistischen Quantenmechanik wird aber die Schréodinger-
Gleichung fiir freie Bosonen durch

82
(A—m?)yp = aTZ) (2.12)

1 Was bedeutet das Quadrat einer Funktion, die iiberall verschwindet, aber an einer Stelle
unendlich groft wird?
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ersetzt. Diese sog. Klein-Gordon-Gleichung entspricht der relativistischen
Energie-Impuls-Beziehung (1.42).2 Sie ist auch in der Ableitung nach der
Zeit von zweiter Ordnung, und daher muss der nichtrelativistische Ausdruck
fiir die Wahrscheinlichkeitsdichte durch

TR

ersetzt werden, wobei das Symbol ,,** wie iiblich ,konjugiert komplex“ be-
deutet. Die Losung fiir ebene Wellen lautet

Y = Ne 'P® (2.14)

mit dem aus dem Energie-Impuls-Vektor p#* und dem Ortsvektor

o = (D (2.15)

gebildeten Skalarprodukt

p-x=FEt—px . (2.16)

Fiir die Normierungskonstanten leiten wir aus dieser Losung (wegen [ pdV =
1) sofort

1
N, = —— 2.17
V2E,V ( )
ab, die wir spéter auch fiir Fermionen benutzen werden. Wir bekommen damit
fiir den Wirkungsquerschnitt das Ergebnis

dps d®py
2F3(2m)3 2E4(27)3 °
(2.18)

do

1
= —— |Tx?(2m)*6* —p3 —
4E1E2|v1|| il 2 (2m)* 0% (p1 + po — p3 — pa)

Bei der Auswertung in einem System mit ruhenden Target-Teilchen erhalten
wir

2 Benannt nach dem Schweden Oskar Benjamin Klein (1894-1977) und dem Deutschen
Walter Gordon (1893-1939), die diese Gleichung unabhingig voneinander fanden. Auch
W. Gordon gehort zu den vielen bedeutenden Forschern, die in der Nazizeit emigrierten.
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4E1E2"U1| = 4|p1\m2 . (219)

In einer vom Bezugssystem unabhingigen (d.h. relativistisch invarianten)
Form lasst sich der letzte Ausdruck mit Hilfe der in (1.49) definierten Grofe
S19 ebenfalls einfach angeben:

4B Eolvy| = 2512 (2.20)
da ja die Auswertung von S;o im Ruhesystem des Teilchens 2 den Wert

2 ma|p1| ergibt. Die Formel fiir den differentiellen Wirkungsquerschnitt lautet
daher schlieflich

1
do = ——|Ty|?dL 2.21
o = 55 T (221)
worin das sog. lorentz-invariante Phasenraumelement dZ durch

d®ps d®py
(2r)32E; (27)°2E,

dL = (27)*0*(p1 + p2 — ps — pa) (2.22)

definiert ist. Der Beweis der Lorentz-Invarianz von d®p/E, d.h. der Unab-
héngigkeit von der Wahl des Bezugssystem, wird in Abschn. ?? nachgeholt.

Mit (2.21) ist ein wichtiger Zwischenschritt in einer relativistisch korrekten
Behandlung des Wirkungsquerschnitts erreicht. Er wird durch diese Formel
in drei explizit lorentz-invariante Anteile zerlegt: den Flussfaktor der einlau-
fenden Teilchen, das Quadrat des Matrixelements und das Intervall des zur
Verfiligung stehenden Phasenraumes. Um weiter zu kommen, miissen wir jetzt
dL iber nicht bendtigte Variablen integrieren. Am einfachsten geht das im
Schwerpunktssystem der Reaktion. Uber den RiickstoRimpuls des auslaufen-
den Protons kann mit Hilfe der §-Funktion sofort integriert werden. Damit
wird aus (2.22)

|P3|2d\P3|

2.23
EsEy ( )

1

worin df2; das Raumwinkelelement des auslaufenden Pions bedeutet.? Jetzt
kénnen wir noch iiber den Impulsbetrag des Pions integrieren, der ja auch
durch die iibrigbleibende d-Funktion festgelegt ist. Dies ist insofern nicht ganz
einfach, als diese §-Funktion nur implizit vom Pionimpuls abhéngt. Unter
Heranziehung der Regel

3 Eine kleine Nachlissigkeit in der Bezeichnungsweise sei hier erlaubt: Das Integralzeichen
auf der linken Seite der Gleichung verlangt nur die Integration iiber nicht mehr bendétigte
Variable.
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/5 dw(‘d ‘ ) (2.24)

die durch Wechsel der Integrationsvariablen, w — f, bewiesen wird, ldsst sich
jedoch mit f = F; + Es — F3— E4 also

F =5 —\[p2+mi—\/pi+m3 (2.25)
die Relation
d
dlpsl|j—g  Es3Es

ableiten. Mit f =0 wird der Energiesatz erfiillt. Mit (2.24) und (2.26) wird
(2.23) in

1 |ps|
dL = df2: — 2.27

/ $1672 /s (2.27)
umgeformt. Dieses Ergebnis hat eine klare anschauliche Bedeutung, die wir
sofort sehen, wenn wir |ps3| aus den Massen der auslaufenden Teilchen be-
rechnen (siehe Kasten in Abschn. 1.3),

|P|:E

Ganz unabhéngig von einer moglichen Massenabhéngigkeit des Matrixele-
mentes ist die Produktionswahrscheinlichkeit von Teilchen mit hoher Masse
vom Phasenraum her unterdriickt, da |ps| Werte zwischen 0 (fiir mg + my =
V/s) und /s/2 (bei verschwindenden Massen der auslaufenden Teilchen) an-
nehmen kann.

Wenn wir auch Si2 in (2.21) durch |p;| ausdriicken, lautet die endgiiltige
Formel fiir den differentiellen Wirkungsquerschnitt

(2.28)

dO’ _ 1 |p3|| |
A2~ 64n2s|p,|

(2.29)

woraus fiir die elastische Streuung einfach
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do®! 1

df2s  64n2s

T |2 (2.30)

folgt. Das Quadrat des Viererimpuls-Ubertrags ¢2 = ¢ ist durch t = (p; —p3)?
definiert (1.15). Mit Hilfe von

dt = 2|p,||ps|dcos O (2.31)

worin @3 den Winkel zwischen den ein- und auslaufenden Pionen bezeichnet,
formen wir (2.29) und (2.30) in die viel benutzte Beziehung

do 1 9
ar 167TS%2|TfZ| (2'32)
um.* In dieser Formel treten nur noch explizit invariante Grofen auf.

Zur Ableitung von (2.32) wurde iiber den Azimutwinkel ¢3 integriert. Dies
ist erlaubt, da wegen der Drehimpulserhaltung die Impulse der Reaktions-
partner eine Ebene aufspannen, und das Matrixelement nicht von der Ori-
entierung dieser Ebene abhédngen darf. Jetzt soll aber nicht der allgemeinen
Diskussion von Symmetrien vorgegriffen werden. Der neugierige Leser findet
eine andere Begriindung fiir die erlaubten Argumente von 7'y; in Abschn. 77.

Schlieflich diskutieren wir die Erweiterung der Formeln auf Fermionen
und andere Teilchen mit Spin. Die ,magnetischen” Spinquantenzahlen der
ein- und auslaufenden Teilchen bezeichnen wir mit j,) , oder j,) 3. Sie bil-
den im Gegensatz zu den Energien und Impulsen einen Satz von diskreten
Quantenzahlen. Die z- oder 3-Achse im Ruhesystem der Teilchen dient hier
als Quantisierungsachse. Fiir jede erlaubte Kombination dieser Zahlen miis-
sen wir T'y; berechnen, die Indizes 7 und f beziehen sich jetzt also auch auf
die Spineinstellungen der Reaktionsteilchen.

Wir werden, wie schon gesagt, spéter die Normierungsfaktoren der Fer-
mionwellenfunktionen so wihlen, dass (2.29) auch fiir Fermionen einer gege-
benen Orientierung der Spins den Zusammenhang zwischen Streuamplitude
und Wirkungsquerschnitt wiedergibt. Eine sehr hiufig vorkommende expe-
rimentelle Anordnung ist nun, dass die einlaufenden Teilchen unpolarisiert
sind, und die Spineinstellungen der auslaufenden Teilchen nicht gemessen
werden. Nach den Regeln der Quantenmechanik wird dann der Wirkungs-
querschnitt durch Mittelung iiber die einlaufenden und Summation iiber die
auslaufenden Spins berechnet,

4 Eine von den meisten Physikern gemiedene pedantische Genauigkeit in der Behandlung
der Vorzeichen verlangt die Anschrift do/d|t| auf der linken Seite der Gleichung, da df2
durch sin ©dOd¢ definiert ist.
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do 1 |p3|z 2
(193 647(25 |p1| | f | ( )

Die Mittelung kann durch ein statistisches Gewicht ¢ in

SN2 =g 3 115 (2.34)

J(n),=

beriicksichtigt werden. Die Summe auf der rechten Seite 1duft iiber alle kom-
binatorischen Mdoglichkeiten der Spineinstellungen der Reaktionspartner. Das
Gewicht g berechnet man durch Abzéhlen der méglichen Spinkombinationen
der einlaufenden Teilchen und anschlieRende Inversion, also g =1/2 fiir die
Pion-Nukleon-Streuung und g =1/4 fur die besonders haufig vorkommenden
e~ et- und p p-Reaktionen, aber auch fiir die Streuung von Photonen an
Photonen.

Beim nochmaligen Durchlesen der Ableitung der Formeln zur Berechnung
des Wirkungsquerschnitts aus der Streuamplitude wird der Leser feststel-
len, dass eine Erweiterung auf mehr als zwei Teilchen im Endzustand leicht
moglich ist. Sie besteht fiir jedes zusétzliche Teilchen einfach im Hinzufiigen
weiterer Faktoren d®p;/(2 )32 E; an das Phasenraumelement (2.22). Die Be-
rechnung des Integrals iiber den Phasenraum kann je nach der funktionalen
Abhéngigkeit des Matrixelementes allerdings ziemlich kompliziert werden, ein
besonders einfaches Beispiel werden wir gleich im néchsten Abschnitt unter-
suchen.

2.1.2 Zerfallsraten

Zunachst betrachten wir die sog. Zwei-Korper-Zerfélle, also z. B. den Zerfall
7t — ut v,. Der Energie-Impuls-Satz lautet

P=pi+ps . (235)

Das Differential der Zerfallsbreite wird aus (1.133) unter Verwendung von
dN = — N¢ berechnet,

dN¢

dI' = .
vT no

(2.36)

Fiir |Ry;|? gilt jetzt entsprechend (2.11)
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|Rsi|*> = VT (21)*6*(P — p1 — p2)(Np N1 N2 )?| Ty (2.37)

Bei der Auswertung von (2.36) im Ruhesystem eines Zerfallsteilchens der
Masse M leitet man mit ng=1/V und

(PH) = (z\04 > (2.38)

iiber®
1
dr = m'Tﬁ'Q /dL (2.39)

die Formel

dar _ 1 |py|
dQl 327T2M2

Tyl (2.40)

ab, worin natiirlich |p1| = |p2|, der Impuls eines der auslaufenden Teilchen
im Ruhesystem des Zerfallsteilchens, wieder aus (1.48) berechnet wird. Falls
das zerfallende Teilchen keinen Spin hat oder falls man nur den Zerfall un-
polarisierter Teilchen mit Spin J betrachtet, ist keine Achse im Ruhesystem
ausgezeichnet, und dI" kann daher nicht von einem Winkel abhingen. Wir
diirfen deshalb die Integration iiber df2 sofort ausfiihren und erhalten als
allgemeines Ergebnis

Pl
- 8M1422\Tﬂ\2 . (2.41)

Das zur Ausfiihrung der rechten Seite benétigte statistische Gewicht fiir ein
zerfallendes Teilchen mit dem Spin J ist klarerweise durch

r

(2.42)

definiert.

Bei der Untersuchung der Strahlungszerfille von Hadronen (H* — H +7)
ist es manchmal einfacher, analog zu dem Vorgehen der Atomphysik und
Kernphysik eine nichtrelativistische Rechnung (Index NR) durchzufiihren.
Unter Verwendung einer nichtrelativistischen Normierung der Hadronwellen-
funktionen (Normierungskonstante 1/v/V') bekommen wir bei Vernachlissi-
gung des Energieunterschiedes zwischen ein- und auslaufendem Hadron

5 Das Integralzeichen bezeichnet wieder nur die Integration iiber nicht benétigte Variablen.
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dar _ P |

NR |2
0, = s TN (2.43)

fi

Besonders wichtig sind auch die Drei-Korper-Zerfille, man denke nur an
das klassische Beispiel des -Zerfalls. Der Energie-Impuls-Satz lautet nun

P=pi+p2+ps (2.44)

und fiir das Phasenraumelement in (2.39) gilt

d3py d®ps d®ps

_ 4 ¢4
AL = @m0 (P =1 = P2 = P8) 5o By (3325 (20 VP00,

(2.45)

Wir bleiben im Ruhesystem des Mutterteilchens. Die Integration iiber p3 ist
wieder sofort moglich, und die verbleibende -Funktion 6(M — F1 — E5 — F3)
erlaubt im Prinzip noch eine weitere Integration ohne Beachtung der Argu-
mente des Matrixelementes. Nach Summierung bzw. Mittelung iber die Spins
der aus- und einlaufenden Teilchen kann die Summe der Quadrate dieser Ma-
trixelemente nur von den Impulskomponenten der Teilchen im Endzustand
abhingen. Wie viele unabhéingige Komponenten gibt es? Um diese Frage zu
beantworten, bedenken wir, dass die Impulse der auslaufenden Teilchen in
einer Ebene liegen. Wir haben noch die Freiheit, das Koordinatensystem so
zu legen, dass z. B. die z-Achse mit einem der Impulse zusammenfillt. Dann
stehen noch fiinf Komponenten (ndmlich drei Impulsbetrige und zwei relati-
ve Winkel) zur Verfiigung, die aber durch drei Erhaltungssétze der Energie
und des Impulses miteinander verkniipft sind. Wir wahlen als unabhéngige
Komponenten die Energien E1, Es und ziehen die zugehorigen Differentiale
vor das Integral. Das Ergebnis lautet daher zunéchst

_ |P1||P2‘/ 1
/dL—dEldEg 8(27)° 0(M — Ey — Es Es)ESd!Zlng , (2.46)

wobei noch

E
d|p| = idE (2.47)

benutzt wurde. Wir legen nun den Impuls p; in die z-Achse eines rdumlichen
Koordinatensystems und integrieren iiber alle moglichen Orientierungen der
z-Achse, d. h. liber df2; und anschlieftend iiber den Azimutwinkel des zweiten
Teilchens. Insgesamt ergibt dies einen Faktor 8 w2. Die verbleibende Integra-
tion iiber d cos @ ist nicht so einfach, weil die §-Funktion nur implizit von
O abhéngt. Um Fj3 als Funktion von cos ©5 zu berechnen, ziehen wir den
Impulssatz > p,, = 0 heran und erhalten
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Abb. 2.2 Beispiel fiir eine Dalitz-Auftragung. Untersucht wurde die Reaktion p + p —
0
K + K¥ 4+ 7%, Die erhdhte Punktdichte beweist die Bildung von Kaon-Resonanzen

p3 =pi +Pp3 +2|p||pa| cos O . (2.48)

Damit liegt auch Ej3 fest und wir konnen jetzt mit Formel (2.24) weiterar-
beiten, deren Anwendung das Endergebnis

1
/ dL = 5 5dEydE, (2.49)

fir den Drei-Teilchen-Phasenraum liefert. Mit der oben beschriebenen Sum-

mation und Mittelung iiber die Spins erhalten wir somit das bemerkenswerte
Resultat

(B, E 1 =
dlguiE;) - 64773MZ|Tfi(E1’E2)|2 ' (2.50)

Jedes Zerfallsereignis lasst sich als Punkt in der £, Fo-Ebene darstellen. Die
Punktdichte in dieser Ebene ist offenbar ein direktes Maf fiir das Betrags-
quadrat des Matrixelements. Diese Auftragung nach Dalitz oder Dalitz-Plot-
Methode hat sich als enorm niitzlich in der Untersuchung der Drei-Korper-
Zerfalle erwiesen. Die Abb. 2.2 demonstriert, wie die hohere Punktdichte an
bestimmten Stellen direkt die Bildung neuer Resonanzen anzeigt.

Im Fall verschwindender Masse der Teilchen im Endzustand sind die Gren-
zen des Dalitz-Plots einfach durch das Dreieck der Abb. 2.3 gegeben, i. allg.
ist aber die Berechnung der Grenzen ziemlich kompliziert. Man erhélt sie
durch Auswertung der Bedingung
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Abb. 2.3 Grenzen des Dalitz-Plots fiir den Drei-Korper-Zerfall in masselose Teilchen

|cos@y] <1, (2.51)

wobei cos @y sich aus (2.48) ermitteln ldsst. Zur Bestimmung dieser Gren-
zen sind numerische Methoden besonders geeignet, ein Beispiel ist in dem
Programm dalitz.txt auf der Web-Seite angegeben, dessen Parameter der
Leser nach eigenem Belieben veréndern sollte.

2.1.3 Symmetrien der S-Matrix

Die Erforschung von Symmetrien in den Naturgesetzen ist einer der schénsten
Zweige der Physik. Die Symmetrien fithren uns zu Erhaltungsséitzen und
Aussagen iiber die Struktur der Streuamplitude, deren Giiltigkeit nicht an ein
bestimmtes Modell einer Wechselwirkung gekniipft ist. In der Teilchenphysik
liefert das S-Matrix-Konzept einen besonders einfachen Zugang zu diesen
Uberlegungen. Historisch spielten sie eine besonders wichtige Rolle in der Zeit
vor der Etablierung des Standardmodells. Da heute Feynman-Regeln fiir alle
Wechselwirkungen bekannt sind, treten Betrachtungen iiber die Symmetrien
der Streumatrix naturgeméft in den Hintergrund. Der Leser kann daher im
Prinzip die folgenden Abschnitte zunédchst ibergehen. Das Symmetriekonzept
der Quantenmechanik wird in den entsprechenden Lehrbiichern ausfithrlich
diskutiert [Gre05, Mes90]. Wem die folgende Zusammenfassung zu schnell
geht, sollte diese Biicher konsultieren.
Die S-Matrix (bzw. der S-Operator) ist unitér, d. h. es gilt
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SSt =875 =1 (2.52)

oder

S—t=g57. (2.53)

Die Matrixelemente des adjungierten Operators ST sind hierbei wie iiblich
durch

Sy = ij (2.54)

definiert. Fiir das System zur Zeit ¢t — —oo und das System zur Zeit ¢t — 400
gilt damit der Zusammenhang

@iy = (i| STS |i) = (i |i) . (2.55)

Physikalisch bedeutet die Unitaritdt der S-Matrix die Erhaltung der Wahr-
scheinlichkeit im Streuprozess: ,Was hinein 1duft, muss auch wieder heraus-
kommen®“.

Im Hilbertraum der Zusténde |i) und |f) betrachten wir nun die Wir-
kung einer beliebigen unitdren Transformation U, wobei die transformierten
Zusténde mit dem ,,;” “-Symbol bezeichnet werden:

Uli) =
Ulf) =

i)
)
Der S-Operator transformiert sich unter U geméf der allgemeinen Transfor-
mationsregel fiir Operatoren

)

(2.56)

S=usut (2.57)

und daher gilt trivialerweise

(f|S i)y = (fIUTUSUTU [i) = (f| S |i) . (2.58)

Uns interessieren besonders die Fille, bei denen S invariant unter U ist, also
S =5, was die Bedingung

Usut =8 (2.59)
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ergibt. Nach Multiplikation dieser Gleichung mit U jeweils von rechts und
anschliefender Subtraktion der linken von der rechten Seite folgt hieraus
wegen UTU =1

SU-US=0, (2.60)

was mit

[S,U] =0 (2.61)

abgekiirzt wird. Um die Bedeutung dieses Resultats zu verstehen, untersu-
chen wir infinitesimale Transformationen. Eine infinitesimale unitére Trans-
formation lasst sich als Abweichung von der Einheitsmatrix 1 schreiben,

U=1-idaF , (2.62)

wobei (2.62) den einfachsten Fall mit einem reellen Parameter do und einem
sog. Generator F' der unitdren Transformation U darstellt. Kompliziertere
Beispiele werden wir spéater kennenlernen, aber das Wesentliche sieht man
schon bei der Beschrankung auf (2.62). Beim Sammeln der in da linearen
Terme gilt ndmlich

UtU = (1 +idaFN(1 —idaF)
~1+ida(FT —F) (2.63)

und daher

FT=F . (2.64)

Das heifst, die Generatoren F' sind Hermitesche Operatoren. Solche Operato-
ren repriasentieren bekanntlich die messbaren Grofen in der Quantenmecha-
nik. Aus (2.61) folgt dann mit (2.62) sofort

[S, F]=0, (2.65)

und dies ist ein hochst wichtiges Resultat. Es bedeutet, dass die Eigenwerte
von F' im Streuprozess erhalten bleiben, d.h. es gibt einen Erhaltungssatz
fiir die durch die Operatoren F' reprasentierten Messgrofien.

Am einfachsten sehen wir das an einem Beispiel ein. Es sei F die z-
Komponente des Gesamtimpulses der Reaktionspartner, F' = P, mit den Ei-
genwerten P; , und Py , im Anfangs- bzw. Endzustand der Reaktion. Dann
gilt
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<f|[SaPz] |Z> = (Pi,z_Pf,z)Sfi (266>

und wegen (2.65)

Pr,=PF, . (2.67)
Wir haben also gezeigt, dass die Impulserhaltung identisch zu einer Symme-
trie der S-Matrix unter der Transformation
U=1-idaP, (2.68)
ist. Jetzt wollen wir die physikalische Bedeutung dieser Transformation noch
etwas niher untersuchen.® Wir werden zeigen, dass U die durch eine Ver-
schiebung des Koordinatensystems induzierte Transformation ist. Ein Teil-
chen mit der Ortskoordinate z wird durch einen Zustandsvektor |z) beschrie-
ben. In |7) sind natiirlich auch die Ortskoordinaten aller Teilchen enthalten,
[¢y=|..., 21, 22,...), wofiir wir vereinfachend |z) schreiben. Wenn wir nun
unsere Apparatur um ein Stiick Az verschieben, wird der Zustandsvektor zu
|z + Az) mit der Verkniipfung
|z 4+ Az) = U, (Az) |z) . (2.69)

Wegen (2.62) gilt fiir den Generator F', der Verschiebung

F.|2) = £(|2+Az> —12)) . (2.70)

Hierbei haben wir dao = — Az gesetzt. Im Grenzfall Az — 0 folgt

F,|z) = —i—|z) , (2.71)

also

F.=P, , (2.72)

wobei die Operatorbeziehung

6 Immer wieder lesenswert in diesem Zusammenhang ist Diracs Buch iiber Quantenme-
chanik [Dir81].



2 Die Streumatrix und ihre Symmetrien 119

. d
P, =-i L (2.73)
schon aus der elementaren Quantenmechanik geldufig ist.

Mit den einfachen Mitteln des S-Matrix-Formalismus haben wir so das
beriihmte Noethersche Theorem der Feldtheorie gefunden: Einer Symmetrie
der Wechselwirkung entspricht ein Erhaltungssatz physikalischer Observa-
blen.” Beispielsweise folgt die Impulserhaltung aus der Invarianz der Theorie
gegeniiber rdumlichen Verschiebungen, Energieerhaltung aus der Invarianz
gegeniiber zeitlichen Verschiebungen, Drehimpulserhaltung aus der Invarianz
unter Drehungen. Die Zusténde |i) und |f) geben wir als Eigenzustéinde zu
den erhaltenen Operatoren an. Das Studium der Symmetrien zeigt uns daher
auch einen geeigneten Satz von Quantenzahlen der Elementarteilchen. Mit
diesen Quantenzahlen und den Methoden ihrer experimentellen Bestimmung
werden wir uns daher noch eine Weile beschéftigen.

2.1.4 Das optische Theorem

Wir haben im letzten Abschnitt die Unitaritat als Erhaltung der Wahrschein-
lichkeit im Streuprozess interpretiert. Mathematisch ldsst sich allein aus der
Unitaritdtsbedingung eine fundamentale Beziehung zwischen dem Imaginér-
teil der Streuamplitude und ihrem Betrag begriinden. Zur Herleitung im Fall
einer beliebigen 2-Korperreaktion folgern wir zunéichst aus SST = 1

RR" = —2ReR = —2(27)* Ny Na N3 Ny6* ImT | (2.74)

worin R e und I m fiir Realteil bzw. Imaginérteil stehen. Nun schieben wir
die Vollsténdigkeitsrelation »_ . | f)(f| = 1 zwischen R und R' auf der linken
Seite und multiplizieren die gesamte Gleichung von links mit (7| und von
rechts mit |). Das Ergebnis lautet

> |Rpil? = —2(2n*) NP N3 6* ImT5L(0) (2.75)
f

Auf der rechten Seite wurde hierbei noch T';; = T;li(O) benutzt, T';; ist also
durch die elastische Streuamplitude in Vorwiértsrichtung (© =0) gegeben.
Dies entspricht anschaulich dem Grenziibergang |f) — |i). Aukerdem gilt in
diesem Fall N1 = N3 und Ny = Ny4. Die formale Summe {iber f auf der linken
Seite muss im Fall der kontinuierlich verteilten Impulse durch das Integral

il ‘(/deff’ ‘(/;:)%4 ersetzt werden. Unter Benutzung von (2.4) und der Definition

(2.22) ergibt dies

7 Amalie Emmy Noether (1882-1935) gilt als die bisher bedeutendste deutsche Mathema-
tikerin. Sie emigrierte 1933 in die USA.
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Z/|Tﬁ|2dL = —2ImT$(0) , (2.76)
k

wobei die Summe auf der linken Seite {iber die verschiedenen moglichen Reak-
tionskanile k, also auch iiber die moglichen Werte des Spins der Endzustdnde
lauft. Das Integral erstreckt sich hier iiber den gesamten Bereich der Impulse
p3 und p4. Durch Vergleich mit (2.21) lernen wir daher, dass Y, [ [T;|*dL
bis auf einen Faktor 2 Si5 der totale Wirkungsquerschnitt o; fiir eine be-
stimmte Konfiguration der Spins der einlaufenden Teilchen ist,

o = —1]mTe§(O) . (2.77)
S12

Damit ist das optische Theorem formuliert. Thm werden wir noch an verschie-
denen Stellen des Buches begegnen. Aus der Art der Herleitung wird klar,
dass es auch fiir Endzustdnde mit beliebig vielen Teilchen giiltig ist. Immer
ist der totale Wirkungsquerschnitt durch die elastische Streuamplitude der
zwei einlaufenden Teilchen in Vorwartsrichtung gegeben, wobei elastisch auch
bedeutet, dass die Spineinstellungen der Teilchen erhalten bleiben.

Die Namensgebung des Theorems erinnert daran, dass in der Optik die
Abschwéchung der Intensitdt einer Welle in Materie durch den Imaginérteil
des Brechungsindex beschrieben wird. In dem Lehrbuch Collision Theory von
Goldberger und Watson [Gol64] aber auch in dem schon hiufig erwdhnten
Buch von Jackson [Jac98]| findet man eine ausfiihrliche und tief gehende Dis-
kussion dieses fiir die Streutheorie eminent wichtigen Zusammenhangs.

2.1.5 Anhang iiber die §-Funktion

Die von Dirac gefundene d-Funktion hat sich als besonders hilfreich beim
Rechnen mit den ebenen Wellen der Quantenmechanik erwiesen. In einer
Dimension (z.B. der Kreisfrequenz w) ist die é-Funktion durch folgende Ei-
genschaften festgelegt: Falls wy auferhalb des Integrationsintervalls liegt, gilt

/6(w —wp)dw =0 . (2.78)

Hingegen gilt, falls wy innerhalb des Integrationsintervalls liegt,®

8 Diese beiden Eigenschaften charakterisieren die d-Funktion noch nicht eindeutig. Auch
hier sei wieder ein Blick in das Buch von J.D. Jackson und die dort genannten mathema-
tischen Lehrbiicher empfohlen [Jac98§].
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/5(w —wo)dw=1. (2.79)

Man kann sich §(w —wyp) als eine Funktion vorstellen, die iiberall ver-
schwindet, aufser bei wgy, wo sie unendlich grof wird. Der damit arg stra-
pazierte Funktionsbegriff zeigt den lockeren Umgang der Physiker mit un-
endlichen Gréfsen, aber in der mathematischen Distributionstheorie wird ge-
zeigt, dass sich mit solchen Distributionen wie mit gewéhnlichen Funktionen
rechnen lésst. Eine elementare Zusammenfassung findet man in [Ber80]. Aus
den angegebenen Eigenschaften folgt sofort die sehr wichtige Wirkung der
0-Funktion auf gewohnliche Funktionen g(w)

+oo
/ 5(w — wo)g(w)dw = g(wo) - (2.80)

Fiir sehr grofe Werte eines Parameters T mit der Dimension der Zeit kann
man die J-Funktion durch

sin(wT'/2)

p(w) = (2.81)
annahern. Dies sollte sich der Leser am besten durch numerische Konstrukti-
on klarmachen. Die Abb. 2.4 zeigt ein Beispiel fiir 7'=20 s. Aus der letzten
Gleichung lasst sich durch Betrachtung des Grenziibergangs w — 0 die fiir die

Manipulation von Formeln mit Potenzen der d-Funktion niitzliche Beziehung

276(0) =T (2.82)

ableiten. Da ¢(w) andererseits die Losung des Integrals

+T/2
1 .
L / etdy (2.83)
27
—-T/2
ist, ergibt sich daraus
1
S(w)=— [ “'dt 2.84
=5 [ (280

als Integraldarstellung der d-Funktion.
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Abb. 2.4 Die Funktion sin(w T/2)/7 w stellt fiir 7= 20s offenbar schon eine recht gute
Annéherung an die §-Funktion dar



