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Die Streumatrix und ihre
Symmetrien

Christoph Berger

Einführung
Mit Hilfe des Konzepts der Streumatrix S lassen sich Reaktionen der
Quantenmechanik in sehr allgemeiner Form beschreiben. Wenn man
eine Theorie zur Berechnung der Matrixelemente zur Hand hat, inter-
essiert besonders der Zusammenhang zwischen diesen Matrixelementen
und den physikalischen Observablen wie dem Wirkungsquerschnitt und
der Zerfallsrate. Damit wollen wir uns zunächst beschäftigen. Unab-
hängig von einer spezifischen Theorie muss die S -Matrix aber gewissen
Symmetriebedingungen genügen, die allein ausreichen, die Form des
Wirkungsquerschnitts festzulegen. Das bekannteste Beispiel ist der Zu-
sammenhang zwischen Teilchenspins und Winkelverteilung. Daher wird
im Anschluss an die Formeln für Wirkungsquerschnitte und Zerfallsra-
ten das Symmetriekonzept vorgestellt. Die anschließenden Abschnitte
behandeln die Symmetrien der Streumatrix und die daraus folgenden
experimentellen Konsequenzen.

2.1 Die Streumatrix

Die Idee der Streumatrix führen wir ganz pragmatisch am Beispiel eines
Streuexperimentes zwischen zwei einlaufenden und zwei auslaufenden Teil-
chen (Abb. 2.1) ein. Am besten halten wir uns immer das Beispiel der π p-
Streuung vor Augen. Das Pion-Nukleon-System vor der Streuung beschreiben
wir durch den quantenmechanischen Zustandsvektor |i〉. In |i〉 (i = initial)
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Abb. 2.1 Allgemeines Diagramm einer Zwei-Körper-Streureaktion 1+2→ 3+4. Als Bei-
spiel wird in diesem Abschnitt die Pion-Proton-Streuung betrachtet, π+ p →π+ p

sind also alle Quantenzahlen des Systems zur Zeit t→−∞ enthalten. Zur
Zeit t→+∞ sei das System im Zustand |i ′〉. Der Übergang wird durch den
Streuoperator S beschrieben:

|i′〉 = S |i〉 . (2.1)

Der Detektor präpariert aus allen möglichen in |i ′〉 enthaltenen Zuständen
einen bestimmten Endzustand |f 〉 (f = final) heraus. Die Wahrscheinlichkeit-
samplitude, |f 〉 in |i ′〉 zu finden, ist durch das Skalarprodukt

〈f | i′〉 = 〈f |S |i〉 = Sfi , (2.2)

also durch die Matrixelemente des S -Operators, gegeben.
In |i ′〉 sind natürlich auch die ohne Wechselwirkung durchlaufenden Zu-

stände enthalten, wir können daher einen Reaktionsoperator R über

S = 1 +R (2.3)

einführen. Auf diese Weise wird S in zwei Anteile zerlegt, von denen nur
einer (R) den einlaufenden Zustand |i〉 ändert. Gemäß einer häufig benutz-
ten Konvention definieren wir die Übergangsamplitude oder Streuamplitude
T f i durch Abspalten weiterer Faktoren von Rf i = 〈f |R| i〉. Diese Amplitude
enthält die gesamte Dynamik des Prozesses. Falls man eine Theorie der be-
trachteten Reaktion hat, erlauben die zu den Feynman-Graphen gehörenden
Rechenvorschriften die Berechnung von T f i. Der Zusammenhang mit Rf i ist
durch

Rfi = −i(2π)4N1N2N3N4δ
4(p1 + p2 − p3 − p4)Tfi (2.4)
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festgelegt. Hierin sind pn die Viererimpulse der beteiligten Teilchen (n =1,2,3,4)
und N n die Normierungsfaktoren ihrer Wellenfunktionen.

Das Symbol δ4 bezeichnet das Produkt von vier Diracschen δ-Funktionen
mit jeweils einer Komponente der Viererimpulse als Argument. Damit wird
explizit die Energie-Impuls-Erhaltung im Prozess zum Ausdruck gebracht.
Dies wird klar, wenn man sich nochmal an die Eigenschaften dieser Funktion
erinnert. Für den interessierten Leser enthält der Anhang zu diesem Abschnitt
eine Zusammenstellung der wichtigsten Definitionen und Rechenregeln.

2.1.1 Wirkungsquerschnitte und Streuamplitude

Zur weiteren theoretischen Behandlung unseres Streuexperimentes stellen wir
uns einen Kasten mit dem Volumen V, der Länge ∆z und dem Querschnitt A
vor. In seiner Mitte liege das Target-Proton, und während des Zeitintervalls T
trete ein Pion in den Kasten ein. Es handelt sich bei diesem Kasten um das
target der Abb. 1.18, aber mit nur noch einem Proton als Inhalt. Das zugehö-
rige Reaktionsdiagramm ist in Abb. 2.1 angegeben. Die abgeleiteten Formeln
gelten zunächst für alle Reaktionen mit zwei einlaufenden und zwei auslaufen-
den Teilchen, also z. B. für die elastische Streuung (1.112) und die inelastische
Reaktion (1.118). Angaben von Winkeln und Impulskomponenten beziehen
sich auf ein Koordinatensystem, dessen z -Achse in Richtung des einlaufenden
Pions liegt. Zur einfacheren Handhabung sehen wir zunächst vom Spin des
Protons ab und behandeln alle Teilchen als Bosonen.

In unserem Gedankenexperiment ist n0 =1/V. Das einlaufende Pion habe
die Geschwindigkeit |v1|. Da im Zeitintervall T ein Pion im Kasten sein soll,
ist N in =T |v1|/∆z und daher lässt sich (1.123) in

dσ =
V dNf

T |v1|
(2.5)

umformen. Jetzt muss dN f berechnet werden. In der hier betrachteten Kon-
figuration mit jeweils einem Pion und einem Proton ist dN f gleich der Wahr-
scheinlichkeit für die Streuung des Pions. Zu ihrer Berechnung benutzen wir
die „goldene Regel“ der Quantenmechanik für den Übergang in ein Intervall
von dicht beieinander liegenden Endzuständen:

dNf = |Rfi|2 · (Zahl der Endzustände) . (2.6)

Ein Teilchen in einem Kasten mit dem VolumenV und mit Impulsen zwischen
p und p +dp kann
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dZ =
V d3p

(2π)3
(2.7)

Zustände einnehmen, da man nach Fermi das Volumen des Phasenraumes
(also V d3p) in Zellen der Größe h3 =(2π ~)3 aufteilen muss. Eine genauere
Begründung dieser Abzählung findet sich in den Lehrbüchern der Quanten-
mechanik oder Kernphysik, z. B. in [Bet07]. Für die untersuchte Streureaktion
gelangen wir so zu

dNf = |Rfi|2
V d3p3
(2π)3

V d3p4
(2π)3

. (2.8)

Ein Vergleich mit (2.4) zeigt, dass in |Rf i |2 das Quadrat einer δ-Funktion
enthalten ist. Das sieht nun wirklich gefährlich aus, aber mit Hilfe der im
Anhang zu diesem Abschnitt abgeleiteten Formeln (2.79) und (2.80) lässt
sich in einer Dimension

[δ(ω)]2 = δ(ω)δ(0) (2.9)

ausnutzen.1 Jetzt wird noch δ(0) durch (2.82) ersetzt. In der Verallgemeine-
rung auf vier Dimensionen gilt daher die Beziehung

(δ4)2 =
V T

(2π)4
δ4 , (2.10)

womit schließlich die wichtige Beziehung

|Rfi|2 = V T (2π)4δ4(p1 + p2 − p3 − p4)(N1N2N3N4)2|Tfi|2 (2.11)

zwischen |Rf i | und |T f i | festgelegt wird.
Von der nichtrelativistischen Quantenmechanik sind wir gewohnt, für die

Normierungskonstanten N n ebener Wellen in einem Kasten 1/
√
V anzu-

setzen. In der relativistischen Quantenmechanik wird aber die Schrödinger-
Gleichung für freie Bosonen durch

(∆−m2)ψ =
∂2ψ

∂t2
(2.12)

1 Was bedeutet das Quadrat einer Funktion, die überall verschwindet, aber an einer Stelle
unendlich groß wird?
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ersetzt. Diese sog. Klein-Gordon-Gleichung entspricht der relativistischen
Energie-Impuls-Beziehung (1.42).2 Sie ist auch in der Ableitung nach der
Zeit von zweiter Ordnung, und daher muss der nichtrelativistische Ausdruck
für die Wahrscheinlichkeitsdichte durch

ρ = i

(
ψ∗
∂ψ

∂t
− ∂ψ

∂t

∗
ψ

)
(2.13)

ersetzt werden, wobei das Symbol „∗“ wie üblich „konjugiert komplex“ be-
deutet. Die Lösung für ebene Wellen lautet

ψ = Ne−ip·x (2.14)

mit dem aus dem Energie-Impuls-Vektor pµ und dem Ortsvektor

xµ =

(
t

x

)
(2.15)

gebildeten Skalarprodukt

p · x = Et− px . (2.16)

Für die Normierungskonstanten leiten wir aus dieser Lösung (wegen
∫
ρdV =

1) sofort

Nn =
1√

2EnV
(2.17)

ab, die wir später auch für Fermionen benutzen werden. Wir bekommen damit
für den Wirkungsquerschnitt das Ergebnis

dσ =
1

4E1E2|v1|
|Tfi|2(2π)4δ4(p1 + p2 − p3 − p4)

d3p3
2E3(2π)3

d3p4
2E4(2π)3

.

(2.18)

Bei der Auswertung in einem System mit ruhenden Target-Teilchen erhalten
wir

2 Benannt nach dem Schweden Oskar Benjamin Klein (1894–1977) und dem Deutschen
Walter Gordon (1893–1939), die diese Gleichung unabhängig voneinander fanden. Auch
W. Gordon gehört zu den vielen bedeutenden Forschern, die in der Nazizeit emigrierten.
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4E1E2|v1| = 4|p1|m2 . (2.19)

In einer vom Bezugssystem unabhängigen (d. h. relativistisch invarianten)
Form lässt sich der letzte Ausdruck mit Hilfe der in (1.49) definierten Größe
S 12 ebenfalls einfach angeben:

4E1E2|v1| = 2S12 , (2.20)

da ja die Auswertung von S 12 im Ruhesystem des Teilchens 2 den Wert
2m2|p1| ergibt. Die Formel für den differentiellen Wirkungsquerschnitt lautet
daher schließlich

dσ =
1

2S12
|Tfi|2dL , (2.21)

worin das sog. lorentz-invariante Phasenraumelement dL durch

dL = (2π)4δ4(p1 + p2 − p3 − p4)
d3p3

(2π)32E3

d3p4
(2π)32E4

(2.22)

definiert ist. Der Beweis der Lorentz-Invarianz von d3p/E, d. h. der Unab-
hängigkeit von der Wahl des Bezugssystem, wird in Abschn. ?? nachgeholt.

Mit (2.21) ist ein wichtiger Zwischenschritt in einer relativistisch korrekten
Behandlung des Wirkungsquerschnitts erreicht. Er wird durch diese Formel
in drei explizit lorentz-invariante Anteile zerlegt: den Flussfaktor der einlau-
fenden Teilchen, das Quadrat des Matrixelements und das Intervall des zur
Verfügung stehenden Phasenraumes. Um weiter zu kommen, müssen wir jetzt
dL über nicht benötigte Variablen integrieren. Am einfachsten geht das im
Schwerpunktssystem der Reaktion. Über den Rückstoßimpuls des auslaufen-
den Protons kann mit Hilfe der δ-Funktion sofort integriert werden. Damit
wird aus (2.22)

∫
dL = dΩ3

∫
1

4(2π)2
δ(E1 + E2 − E3 − E4)

|p3|2d|p3|
E3E4

, (2.23)

worin dΩ3 das Raumwinkelelement des auslaufenden Pions bedeutet.3 Jetzt
können wir noch über den Impulsbetrag des Pions integrieren, der ja auch
durch die übrigbleibende δ-Funktion festgelegt ist. Dies ist insofern nicht ganz
einfach, als diese δ-Funktion nur implizit vom Pionimpuls abhängt. Unter
Heranziehung der Regel

3 Eine kleine Nachlässigkeit in der Bezeichnungsweise sei hier erlaubt: Das Integralzeichen
auf der linken Seite der Gleichung verlangt nur die Integration über nicht mehr benötigte
Variable.
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∫
δ[f(ω)]g(ω)dω =

(
g
∣∣∣df
dω

∣∣∣−1)
f=0

, (2.24)

die durch Wechsel der Integrationsvariablen, ω→ f, bewiesen wird, lässt sich
jedoch mit f =E 1 +E 2−E 3−E 4 also

f =
√
s−

√
p 2
3 +m2

3 −
√
p 2
3 +m2

4 (2.25)

die Relation

∣∣∣∣ df

d|p3|

∣∣∣∣
f=0

=
|p3|
√
s

E3E4
(2.26)

ableiten. Mit f =0 wird der Energiesatz erfüllt. Mit (2.24) und (2.26) wird
(2.23) in

∫
dL = dΩ3

1

16π2

|p3|√
s

(2.27)

umgeformt. Dieses Ergebnis hat eine klare anschauliche Bedeutung, die wir
sofort sehen, wenn wir |p3| aus den Massen der auslaufenden Teilchen be-
rechnen (siehe Kasten in Abschn. 1.3),

|p3| =
S34

2
√
s
. (2.28)

Ganz unabhängig von einer möglichen Massenabhängigkeit des Matrixele-
mentes ist die Produktionswahrscheinlichkeit von Teilchen mit hoher Masse
vom Phasenraum her unterdrückt, da |p3| Werte zwischen 0 (für m3 +m4 =√
s) und

√
s/2 (bei verschwindenden Massen der auslaufenden Teilchen) an-

nehmen kann.
Wenn wir auch S 12 in (2.21) durch |p1| ausdrücken, lautet die endgültige

Formel für den differentiellen Wirkungsquerschnitt

dσ

dΩ3
=

1

64π2s

|p3|
|p1|
|Tfi|2 , (2.29)

woraus für die elastische Streuung einfach
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dσel

dΩ3
=

1

64π2s
|Tfi|2 (2.30)

folgt. Das Quadrat des Viererimpuls-Übertrags q2 = t ist durch t = (p1−p3)2

definiert (1.15). Mit Hilfe von

dt = 2|p1||p3|d cosΘ3 , (2.31)

worin Θ3 den Winkel zwischen den ein- und auslaufenden Pionen bezeichnet,
formen wir (2.29) und (2.30) in die viel benutzte Beziehung

dσ

dt
=

1

16πS2
12

|Tfi|2 (2.32)

um.4 In dieser Formel treten nur noch explizit invariante Größen auf.
Zur Ableitung von (2.32) wurde über den Azimutwinkel φ3 integriert. Dies

ist erlaubt, da wegen der Drehimpulserhaltung die Impulse der Reaktions-
partner eine Ebene aufspannen, und das Matrixelement nicht von der Ori-
entierung dieser Ebene abhängen darf. Jetzt soll aber nicht der allgemeinen
Diskussion von Symmetrien vorgegriffen werden. Der neugierige Leser findet
eine andere Begründung für die erlaubten Argumente von T f i in Abschn. ??.

Schließlich diskutieren wir die Erweiterung der Formeln auf Fermionen
und andere Teilchen mit Spin. Die „magnetischen“ Spinquantenzahlen der
ein- und auslaufenden Teilchen bezeichnen wir mit j (n), z oder j (n) ,3. Sie bil-
den im Gegensatz zu den Energien und Impulsen einen Satz von diskreten
Quantenzahlen. Die z - oder 3-Achse im Ruhesystem der Teilchen dient hier
als Quantisierungsachse. Für jede erlaubte Kombination dieser Zahlen müs-
sen wir T f i berechnen, die Indizes i und f beziehen sich jetzt also auch auf
die Spineinstellungen der Reaktionsteilchen.

Wir werden, wie schon gesagt, später die Normierungsfaktoren der Fer-
mionwellenfunktionen so wählen, dass (2.29) auch für Fermionen einer gege-
benen Orientierung der Spins den Zusammenhang zwischen Streuamplitude
und Wirkungsquerschnitt wiedergibt. Eine sehr häufig vorkommende expe-
rimentelle Anordnung ist nun, dass die einlaufenden Teilchen unpolarisiert
sind, und die Spineinstellungen der auslaufenden Teilchen nicht gemessen
werden. Nach den Regeln der Quantenmechanik wird dann der Wirkungs-
querschnitt durch Mittelung über die einlaufenden und Summation über die
auslaufenden Spins berechnet,

4 Eine von den meisten Physikern gemiedene pedantische Genauigkeit in der Behandlung
der Vorzeichen verlangt die Anschrift dσ/d|t | auf der linken Seite der Gleichung, da dΩ
durch sinΘdΘdφ definiert ist.
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dσ

dΩ3
=

1

64π2s

|p3|
|p1|

∑
|Tfi|2 . (2.33)

Die Mittelung kann durch ein statistisches Gewicht g in

∑
|Tfi|2 = g

∑
j(n),z

|Tfi|2 (2.34)

berücksichtigt werden. Die Summe auf der rechten Seite läuft über alle kom-
binatorischen Möglichkeiten der Spineinstellungen der Reaktionspartner. Das
Gewicht g berechnet man durch Abzählen der möglichen Spinkombinationen
der einlaufenden Teilchen und anschließende Inversion, also g =1/2 für die
Pion-Nukleon-Streuung und g =1/4 für die besonders häufig vorkommenden
e− e+- und p p-Reaktionen, aber auch für die Streuung von Photonen an
Photonen.

Beim nochmaligen Durchlesen der Ableitung der Formeln zur Berechnung
des Wirkungsquerschnitts aus der Streuamplitude wird der Leser feststel-
len, dass eine Erweiterung auf mehr als zwei Teilchen im Endzustand leicht
möglich ist. Sie besteht für jedes zusätzliche Teilchen einfach im Hinzufügen
weiterer Faktoren d3pi/(2π)3 2E i an das Phasenraumelement (2.22). Die Be-
rechnung des Integrals über den Phasenraum kann je nach der funktionalen
Abhängigkeit des Matrixelementes allerdings ziemlich kompliziert werden, ein
besonders einfaches Beispiel werden wir gleich im nächsten Abschnitt unter-
suchen.

2.1.2 Zerfallsraten

Zunächst betrachten wir die sog. Zwei-Körper-Zerfälle, also z. B. den Zerfall
π+→µ+ νµ. Der Energie-Impuls-Satz lautet

P = p1 + p2 . (2.35)

Das Differential der Zerfallsbreite wird aus (1.133) unter Verwendung von
dN =−N f berechnet,

dΓ =
dNf

V T n0
. (2.36)

Für |Rfi|2 gilt jetzt entsprechend (2.11)



112 Christoph Berger

|Rfi|2 = V T (2π)4δ4(P − p1 − p2)(NPN1N2)2|Tfi|2 . (2.37)

Bei der Auswertung von (2.36) im Ruhesystem eines Zerfallsteilchens der
Masse M leitet man mit n0 =1/V und

(Pµ) =

(
M

0

)
(2.38)

über5

dΓ =
1

2M
|Tfi|2

∫
dL (2.39)

die Formel

dΓ

dΩ1
=

1

32π2

|p1|
M2
|Tfi|2 (2.40)

ab, worin natürlich |p1| = |p2|, der Impuls eines der auslaufenden Teilchen
im Ruhesystem des Zerfallsteilchens, wieder aus (1.48) berechnet wird. Falls
das zerfallende Teilchen keinen Spin hat oder falls man nur den Zerfall un-
polarisierter Teilchen mit Spin J betrachtet, ist keine Achse im Ruhesystem
ausgezeichnet, und dΓ kann daher nicht von einem Winkel abhängen. Wir
dürfen deshalb die Integration über dΩ sofort ausführen und erhalten als
allgemeines Ergebnis

Γ =
|p1|

8πM2

∑
|Tfi|2 . (2.41)

Das zur Ausführung der rechten Seite benötigte statistische Gewicht für ein
zerfallendes Teilchen mit dem Spin J ist klarerweise durch

g =
1

2J + 1
(2.42)

definiert.
Bei der Untersuchung der Strahlungszerfälle von Hadronen (H ∗→H + γ)

ist es manchmal einfacher, analog zu dem Vorgehen der Atomphysik und
Kernphysik eine nichtrelativistische Rechnung (Index NR) durchzuführen.
Unter Verwendung einer nichtrelativistischen Normierung der Hadronwellen-
funktionen (Normierungskonstante 1/

√
V ) bekommen wir bei Vernachlässi-

gung des Energieunterschiedes zwischen ein- und auslaufendem Hadron

5 Das Integralzeichen bezeichnet wieder nur die Integration über nicht benötigte Variablen.
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dΓ

dΩ1
=
|p1|
8π2
|TNR
fi |2 . (2.43)

Besonders wichtig sind auch die Drei-Körper-Zerfälle, man denke nur an
das klassische Beispiel des β-Zerfalls. Der Energie-Impuls-Satz lautet nun

P = p1 + p2 + p3 (2.44)

und für das Phasenraumelement in (2.39) gilt

dL = (2π)4δ4(P − p1 − p2 − p3)
d3p1

(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

. (2.45)

Wir bleiben im Ruhesystem des Mutterteilchens. Die Integration über p3 ist
wieder sofort möglich, und die verbleibende δ-Funktion δ(M −E 1−E 2−E 3)
erlaubt im Prinzip noch eine weitere Integration ohne Beachtung der Argu-
mente des Matrixelementes. Nach Summierung bzw. Mittelung über die Spins
der aus- und einlaufenden Teilchen kann die Summe der Quadrate dieser Ma-
trixelemente nur von den Impulskomponenten der Teilchen im Endzustand
abhängen. Wie viele unabhängige Komponenten gibt es? Um diese Frage zu
beantworten, bedenken wir, dass die Impulse der auslaufenden Teilchen in
einer Ebene liegen. Wir haben noch die Freiheit, das Koordinatensystem so
zu legen, dass z. B. die x -Achse mit einem der Impulse zusammenfällt. Dann
stehen noch fünf Komponenten (nämlich drei Impulsbeträge und zwei relati-
ve Winkel) zur Verfügung, die aber durch drei Erhaltungssätze der Energie
und des Impulses miteinander verknüpft sind. Wir wählen als unabhängige
Komponenten die Energien E 1,E 2 und ziehen die zugehörigen Differentiale
vor das Integral. Das Ergebnis lautet daher zunächst

∫
dL = dE1dE2

|p1||p2|
8(2π)5

∫
δ(M − E1 − E2 − E3)

1

E3
dΩ1dΩ2 , (2.46)

wobei noch

d|p| = E

|p|
dE (2.47)

benutzt wurde. Wir legen nun den Impuls p1 in die z -Achse eines räumlichen
Koordinatensystems und integrieren über alle möglichen Orientierungen der
z -Achse, d. h. über dΩ1 und anschließend über den Azimutwinkel des zweiten
Teilchens. Insgesamt ergibt dies einen Faktor 8π2. Die verbleibende Integra-
tion über d cosΘ2 ist nicht so einfach, weil die δ-Funktion nur implizit von
Θ2 abhängt. Um E 3 als Funktion von cosΘ2 zu berechnen, ziehen wir den
Impulssatz

∑
pn = 0 heran und erhalten
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Abb. 2.2 Beispiel für eine Dalitz-Auftragung. Untersucht wurde die Reaktion p + p̄ →
(−)

K

0

+K∓ + π±. Die erhöhte Punktdichte beweist die Bildung von Kaon-Resonanzen

p 2
3 = p 2

1 + p 2
2 + 2|p1||p2| cosΘ2 . (2.48)

Damit liegt auch E 3 fest und wir können jetzt mit Formel (2.24) weiterar-
beiten, deren Anwendung das Endergebnis

∫
dL =

1

32π3
dE1dE2 (2.49)

für den Drei-Teilchen-Phasenraum liefert. Mit der oben beschriebenen Sum-
mation und Mittelung über die Spins erhalten wir somit das bemerkenswerte
Resultat

d2Γ (E1, E2)

dE1dE2
=

1

64π3M

∑
|Tfi(E1, E2)|2 . (2.50)

Jedes Zerfallsereignis lässt sich als Punkt in der E 1,E 2-Ebene darstellen. Die
Punktdichte in dieser Ebene ist offenbar ein direktes Maß für das Betrags-
quadrat des Matrixelements. Diese Auftragung nach Dalitz oder Dalitz-Plot-
Methode hat sich als enorm nützlich in der Untersuchung der Drei-Körper-
Zerfälle erwiesen. Die Abb. 2.2 demonstriert, wie die höhere Punktdichte an
bestimmten Stellen direkt die Bildung neuer Resonanzen anzeigt.

Im Fall verschwindender Masse der Teilchen im Endzustand sind die Gren-
zen des Dalitz-Plots einfach durch das Dreieck der Abb. 2.3 gegeben, i. allg.
ist aber die Berechnung der Grenzen ziemlich kompliziert. Man erhält sie
durch Auswertung der Bedingung
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Abb. 2.3 Grenzen des Dalitz-Plots für den Drei-Körper-Zerfall in masselose Teilchen

| cosΘ2| ≤ 1 , (2.51)

wobei cosΘ2 sich aus (2.48) ermitteln lässt. Zur Bestimmung dieser Gren-
zen sind numerische Methoden besonders geeignet, ein Beispiel ist in dem
Programm dalitz.txt auf der Web-Seite angegeben, dessen Parameter der
Leser nach eigenem Belieben verändern sollte.

2.1.3 Symmetrien der S -Matrix

Die Erforschung von Symmetrien in den Naturgesetzen ist einer der schönsten
Zweige der Physik. Die Symmetrien führen uns zu Erhaltungssätzen und
Aussagen über die Struktur der Streuamplitude, deren Gültigkeit nicht an ein
bestimmtes Modell einer Wechselwirkung geknüpft ist. In der Teilchenphysik
liefert das S -Matrix-Konzept einen besonders einfachen Zugang zu diesen
Überlegungen. Historisch spielten sie eine besonders wichtige Rolle in der Zeit
vor der Etablierung des Standardmodells. Da heute Feynman-Regeln für alle
Wechselwirkungen bekannt sind, treten Betrachtungen über die Symmetrien
der Streumatrix naturgemäß in den Hintergrund. Der Leser kann daher im
Prinzip die folgenden Abschnitte zunächst übergehen. Das Symmetriekonzept
der Quantenmechanik wird in den entsprechenden Lehrbüchern ausführlich
diskutiert [Gre05, Mes90]. Wem die folgende Zusammenfassung zu schnell
geht, sollte diese Bücher konsultieren.

Die S -Matrix (bzw. der S -Operator) ist unitär, d. h. es gilt
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SS† = S†S = 1 (2.52)

oder

S−1 = S† . (2.53)

Die Matrixelemente des adjungierten Operators S† sind hierbei wie üblich
durch

S∗fi = S†if (2.54)

definiert. Für das System zur Zeit t→−∞ und das System zur Zeit t→+∞
gilt damit der Zusammenhang

〈i′|i′〉 = 〈i|S†S |i〉 = 〈i |i〉 . (2.55)

Physikalisch bedeutet die Unitarität der S -Matrix die Erhaltung der Wahr-
scheinlichkeit im Streuprozess: „Was hinein läuft, muss auch wieder heraus-
kommen“.

Im Hilbertraum der Zustände |i〉 und |f 〉 betrachten wir nun die Wir-
kung einer beliebigen unitären Transformation U, wobei die transformierten
Zustände mit dem „˜ “-Symbol bezeichnet werden:

U |i〉 =
∣∣̃i〉 ,

U |f〉 =
∣∣∣f̃〉 .

(2.56)

Der S -Operator transformiert sich unter U gemäß der allgemeinen Transfor-
mationsregel für Operatoren

S̃ = USU† , (2.57)

und daher gilt trivialerweise

〈
f̃
∣∣S̃ ∣∣̃i〉 = 〈f |U†USU†U |i〉 = 〈f |S |i〉 . (2.58)

Uns interessieren besonders die Fälle, bei denen S invariant unter U ist, also
S̃ = S, was die Bedingung

USU† = S (2.59)
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ergibt. Nach Multiplikation dieser Gleichung mit U jeweils von rechts und
anschließender Subtraktion der linken von der rechten Seite folgt hieraus
wegen U†U = 1

SU − US = 0 , (2.60)

was mit

[S,U ] = 0 (2.61)

abgekürzt wird. Um die Bedeutung dieses Resultats zu verstehen, untersu-
chen wir infinitesimale Transformationen. Eine infinitesimale unitäre Trans-
formation lässt sich als Abweichung von der Einheitsmatrix 1 schreiben,

U = 1− i dαF , (2.62)

wobei (2.62) den einfachsten Fall mit einem reellen Parameter dα und einem
sog. Generator F der unitären Transformation U darstellt. Kompliziertere
Beispiele werden wir später kennenlernen, aber das Wesentliche sieht man
schon bei der Beschränkung auf (2.62). Beim Sammeln der in dα linearen
Terme gilt nämlich

U†U = (1 + i dαF †)(1− i dαF )
≈ 1 + i dα(F † − F )

(2.63)

und daher

F † = F . (2.64)

Das heißt, die Generatoren F sind Hermitesche Operatoren. Solche Operato-
ren repräsentieren bekanntlich die messbaren Größen in der Quantenmecha-
nik. Aus (2.61) folgt dann mit (2.62) sofort

[S, F ] = 0 , (2.65)

und dies ist ein höchst wichtiges Resultat. Es bedeutet, dass die Eigenwerte
von F im Streuprozess erhalten bleiben, d. h. es gibt einen Erhaltungssatz
für die durch die Operatoren F repräsentierten Messgrößen.

Am einfachsten sehen wir das an einem Beispiel ein. Es sei F die z -
Komponente des Gesamtimpulses der Reaktionspartner, F =P z, mit den Ei-
genwerten P i, z und P f, z im Anfangs- bzw. Endzustand der Reaktion. Dann
gilt
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〈f | [S, Pz] |i〉 = (Pi,z − Pf,z)Sfi (2.66)

und wegen (2.65)

Pf,z = Pi,z . (2.67)

Wir haben also gezeigt, dass die Impulserhaltung identisch zu einer Symme-
trie der S -Matrix unter der Transformation

U = 1− idαPz (2.68)

ist. Jetzt wollen wir die physikalische Bedeutung dieser Transformation noch
etwas näher untersuchen.6 Wir werden zeigen, dass U die durch eine Ver-
schiebung des Koordinatensystems induzierte Transformation ist. Ein Teil-
chen mit der Ortskoordinate z wird durch einen Zustandsvektor |z 〉 beschrie-
ben. In |i〉 sind natürlich auch die Ortskoordinaten aller Teilchen enthalten,
|i〉= |. . . , z 1, z 2, . . . 〉, wofür wir vereinfachend |z 〉 schreiben. Wenn wir nun
unsere Apparatur um ein Stück ∆z verschieben, wird der Zustandsvektor zu
|z +∆z 〉 mit der Verknüpfung

|z +∆z〉 = Uz(∆z) |z〉 . (2.69)

Wegen (2.62) gilt für den Generator F z der Verschiebung

Fz |z〉 =
−i

∆z
(|z +∆z〉 − |z〉) . (2.70)

Hierbei haben wir dα=−∆z gesetzt. Im Grenzfall ∆z→ 0 folgt

Fz |z〉 = −i
d

dz
|z〉 , (2.71)

also

Fz = Pz , (2.72)

wobei die Operatorbeziehung

6 Immer wieder lesenswert in diesem Zusammenhang ist Diracs Buch über Quantenme-
chanik [Dir81].
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Pz = −i
d

dz
(2.73)

schon aus der elementaren Quantenmechanik geläufig ist.
Mit den einfachen Mitteln des S -Matrix-Formalismus haben wir so das

berühmte Noethersche Theorem der Feldtheorie gefunden: Einer Symmetrie
der Wechselwirkung entspricht ein Erhaltungssatz physikalischer Observa-
blen.7 Beispielsweise folgt die Impulserhaltung aus der Invarianz der Theorie
gegenüber räumlichen Verschiebungen, Energieerhaltung aus der Invarianz
gegenüber zeitlichen Verschiebungen, Drehimpulserhaltung aus der Invarianz
unter Drehungen. Die Zustände |i〉 und |f 〉 geben wir als Eigenzustände zu
den erhaltenen Operatoren an. Das Studium der Symmetrien zeigt uns daher
auch einen geeigneten Satz von Quantenzahlen der Elementarteilchen. Mit
diesen Quantenzahlen und den Methoden ihrer experimentellen Bestimmung
werden wir uns daher noch eine Weile beschäftigen.

2.1.4 Das optische Theorem

Wir haben im letzten Abschnitt die Unitarität als Erhaltung der Wahrschein-
lichkeit im Streuprozess interpretiert. Mathematisch lässt sich allein aus der
Unitaritätsbedingung eine fundamentale Beziehung zwischen dem Imaginär-
teil der Streuamplitude und ihrem Betrag begründen. Zur Herleitung im Fall
einer beliebigen 2-Körperreaktion folgern wir zunächst aus SS† = 1

RR† = −2ReR = −2(2π)4N1N2N3N4δ
4ImT , (2.74)

worin R e und I m für Realteil bzw. Imaginärteil stehen. Nun schieben wir
die Vollständigkeitsrelation

∑
f |f〉〈f | = 1 zwischen R und R† auf der linken

Seite und multiplizieren die gesamte Gleichung von links mit 〈i | und von
rechts mit |i〉. Das Ergebnis lautet

∑
f

|Rfi|2 = −2(2π4)N2
1N

2
2 δ

4ImT el
fi(0) . (2.75)

Auf der rechten Seite wurde hierbei noch T i i =T el
f i(0) benutzt, T i i ist also

durch die elastische Streuamplitude in Vorwärtsrichtung (Θ=0) gegeben.
Dies entspricht anschaulich dem Grenzübergang |f 〉→ |i〉. Außerdem gilt in
diesem Fall N 1 =N 3 und N 2 =N 4. Die formale Summe über f auf der linken
Seite muss im Fall der kontinuierlich verteilten Impulse durch das Integral∫
V d3p3
(2π)3

V d3p4
(2π)3 ersetzt werden. Unter Benutzung von (2.4) und der Definition

(2.22) ergibt dies

7 Amalie Emmy Noether (1882–1935) gilt als die bisher bedeutendste deutsche Mathema-
tikerin. Sie emigrierte 1933 in die USA.
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∑
k

∫
|Tfi|2dL = −2ImT el

fi(0) , (2.76)

wobei die Summe auf der linken Seite über die verschiedenen möglichen Reak-
tionskanäle k, also auch über die möglichen Werte des Spins der Endzustände
läuft. Das Integral erstreckt sich hier über den gesamten Bereich der Impulse
p3 und p4. Durch Vergleich mit (2.21) lernen wir daher, dass

∑
k

∫
|Tfi|2dL

bis auf einen Faktor 2S 12 der totale Wirkungsquerschnitt σt für eine be-
stimmte Konfiguration der Spins der einlaufenden Teilchen ist,

σt =
−1

S12
ImT el

fi(0) . (2.77)

Damit ist das optische Theorem formuliert. Ihm werden wir noch an verschie-
denen Stellen des Buches begegnen. Aus der Art der Herleitung wird klar,
dass es auch für Endzustände mit beliebig vielen Teilchen gültig ist. Immer
ist der totale Wirkungsquerschnitt durch die elastische Streuamplitude der
zwei einlaufenden Teilchen in Vorwärtsrichtung gegeben, wobei elastisch auch
bedeutet, dass die Spineinstellungen der Teilchen erhalten bleiben.

Die Namensgebung des Theorems erinnert daran, dass in der Optik die
Abschwächung der Intensität einer Welle in Materie durch den Imaginärteil
des Brechungsindex beschrieben wird. In dem Lehrbuch Collision Theory von
Goldberger und Watson [Gol64] aber auch in dem schon häufig erwähnten
Buch von Jackson [Jac98] findet man eine ausführliche und tief gehende Dis-
kussion dieses für die Streutheorie eminent wichtigen Zusammenhangs.

2.1.5 Anhang über die δ-Funktion

Die von Dirac gefundene δ-Funktion hat sich als besonders hilfreich beim
Rechnen mit den ebenen Wellen der Quantenmechanik erwiesen. In einer
Dimension (z. B. der Kreisfrequenz ω) ist die δ-Funktion durch folgende Ei-
genschaften festgelegt: Falls ω0 außerhalb des Integrationsintervalls liegt, gilt

∫
δ(ω − ω0)dω = 0 . (2.78)

Hingegen gilt, falls ω0 innerhalb des Integrationsintervalls liegt,8

8 Diese beiden Eigenschaften charakterisieren die δ-Funktion noch nicht eindeutig. Auch
hier sei wieder ein Blick in das Buch von J.D. Jackson und die dort genannten mathema-
tischen Lehrbücher empfohlen [Jac98].
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δ(ω − ω0)dω = 1 . (2.79)

Man kann sich δ(ω−ω0) als eine Funktion vorstellen, die überall ver-
schwindet, außer bei ω0, wo sie unendlich groß wird. Der damit arg stra-
pazierte Funktionsbegriff zeigt den lockeren Umgang der Physiker mit un-
endlichen Größen, aber in der mathematischen Distributionstheorie wird ge-
zeigt, dass sich mit solchen Distributionen wie mit gewöhnlichen Funktionen
rechnen lässt. Eine elementare Zusammenfassung findet man in [Ber80]. Aus
den angegebenen Eigenschaften folgt sofort die sehr wichtige Wirkung der
δ-Funktion auf gewöhnliche Funktionen g(ω)

+∞∫
−∞

δ(ω − ω0)g(ω)dω = g(ω0) . (2.80)

Für sehr große Werte eines Parameters T mit der Dimension der Zeit kann
man die δ-Funktion durch

ϕ(ω) =
sin(ωT/2)

πω
(2.81)

annähern. Dies sollte sich der Leser am besten durch numerische Konstrukti-
on klarmachen. Die Abb. 2.4 zeigt ein Beispiel für T =20 s. Aus der letzten
Gleichung lässt sich durch Betrachtung des Grenzübergangs ω→ 0 die für die
Manipulation von Formeln mit Potenzen der δ-Funktion nützliche Beziehung

2πδ(0) = T (2.82)

ableiten. Da ϕ(ω) andererseits die Lösung des Integrals

1

2π

+T/2∫
−T/2

eiωtdt (2.83)

ist, ergibt sich daraus

δ(ω) =
1

2π

+∞∫
−∞

eiωtdt (2.84)

als Integraldarstellung der δ-Funktion.
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Abb. 2.4 Die Funktion sin(ωT/2)/π ω stellt für T =20 s offenbar schon eine recht gute
Annäherung an die δ-Funktion dar


