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Lösungshinweise zu den
Übungsaufgaben

Christoph Berger

Vorbemerkung: Immer wenn es sich empfiehlt, die Aufgaben mit einem
algebraischen Programm zu lösen, wird auf die Web-Seite des Buches ver-
wiesen, die über meine Homepage http://mozart.physik.rwth-aachen.de
erreicht werden kann. Dort sind die entsprechenden MAPLE-Routinen und
ihre Ergebnisse zu finden.

8.1 Kapitel 1

1.1 Es gilt wie immer E =
√

p2 +m2, T =E −m und β= |p|/E. Daraus
lassen sich die gesuchten Werte berechnen. Eine Graphik befindet sich im
Web.

1.2 Zur graphischen Lösung konsultieren Sie bitte das Web.
1.3 Im Einheitensystem der Teilchenphysik wird aus der Dimension der Gra-

vitationskonstanten (Länge3 Zeit−2 Masse−1) die Dimension (Energie)−2.
G/(c5 ~) hat diese Dimension auch im SI-System und ist im Einheitensys-
tem der Teilchenphysik mit G identisch. Im SI-System gilt 1/

√
G/(c5~) =

1,221 · 1019 GeV.
1.4 Wir vernachlässigen den Spin der Teilchen. Dann gilt für den Bahndrehim-

puls L = Er =
√

2, wegen J =1. Daraus folgt r =
√

2/E. Das Reaktions-
volumen ist eine Kugel mit dem Radius r, also gilt für die Energiedichte
ρE≈E 4/10.

1.5 Mit den Ergebnissen der letzten Aufgabe folgt t0 =1,75 · 10−9 s.
1.6 Es gilt
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s = 2(M2 + E1E2 + |p1||p2|) .

Aus E 1 =968MeV und E 2 =1138MeV folgt
√
s = 2066 MeV.

1.7 Mit Hilfe von (1.48) folgt |p| = 0,23GeV.
1.8 Die Hauptzerfallskanäle sind π+→µ+ νµ und π+→ e+ νe. Es sind aber

auch Zerfälle mit einer zusätzlichen Abstrahlung von Photonen bzw. e+ e−-
Paaren erlaubt.

1.9 Mit P = p1 + p2 gilt im Schwerpunktsystem offenbar

E1 =
P · p1√

s
.

Wenn man jetzt noch

2p1 · p2 = (p1 + p2)2 −m2
1 −m2

2

benutzt, lässt sich (1.49) relativ schnell ableiten.
1.10 Die Anwendung von (1.109) ergibt mit mf =mρ und m =0 eine Zeitdauer

von 2,2 · 10−24 s.
1.11 Wir setzen als Basisreaktion die Streuung νe p→ e− n an. Der Wirkungs-

querschnitt beträgt nach (1.60) etwa 10−43 cm2. Mit nFe aus (1.114) folgt
np =Z nFe und daher λ=4,5 · 1016 m. Für Pionen der angegebenen Energie
ergibt sich aus Abb. 2.14 σ≈ 10−25 cm2. Daraus berechnet man λ≈ 2 cm,
wenn als Dichte der Streuzentren AnFe genommen wird. Dieser Ansatz
einer Streuung an einzelnen Nukleonen ist aber gewagt, da die Reichweite
eines Pions in Kernmaterie nur etwa 1 fm beträgt. Diese Zahl ergibt sich,
wenn man den Kern als eine Kugel mit dem Radius r0 A1/3 und r0 =1,3 fm
betrachtet.

1.12 In (1.126) setzen wir Ṅin = n1fp und n0 =n2/(A∆z ) ein.
1.13 Das Integral des Bhabha-Querschnitts ist σ≈ 1,9 · 10−30 cm2. Also gilt

L=2,6 · 1030 cm−2s−1. Der integrierte Wirkungsquerschnitt der Paarer-
zeugung ist demgegenüber völlig vernachlässigbar, σ≈ 5 · 10−38 cm2.

1.14 Es gilt

xf = M11x0 + M12x
′
0 ,

wobei die Matrixelemente aus dem Produkt eines fokussierenden Quadru-
pols (1.157) und einer freien Wegstrecke (1.159) berechnet werden. Damit
folgt

M11 = cosΩ − l
√
k ,
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also l =1,47m. Der Rest der Aufgabe ist wieder ein gutes Beispiel für die
Anwendung der Computeralgebra. Bitte konsultieren Sie das Web.

8.2 Kapitel 2

2.1 Mit a′i = Rikak und b′i = Rilbl folgt a′ib′i = RikRilakbl = akbk. Im letzten
Schritt wurde die Orthogonalitätsrelation (2.88) benutzt.

2.2 Zur Berechnung von (2.123) muss e−iσ2Θ berechnet werden. Dazu wird
(2.142) mit dem Ergebnis

d1/2 =

(
cos(Θ/2) − sin(Θ/2)
sin(Θ/2) cos(Θ/2)

)
benutzt.

2.3 Es gilt ĵ+ = ĵ(1),+ + ĵ(2),+. Dieser Operator wird auf die rechte Seite von
(2.153) angewendet. Die Indizes (1) und (2) beziehen sich auf den jeweils
ersten bzw. zweiten Faktor eines Produkts von Zuständen.

2.4 Zur Berechnung der Zerfallswinkelverteilung eines ρ-Mesons mit „Spin auf“
muss J =1, J 3 =1,λ=λ1 =λ2 =0 in (2.222) eingesetzt werden. Sie ist also
durch

dΓ
dΩ
∼ 1

2
sin2Θ|t00|2

gegeben. Der Rest der Aufgabe wird ebenso bearbeitet.
2.5 Die Formel (2.267) verkürzt sich auf ein Glied mit J =1. Legen Sie eine

entsprechende Tabelle an.
2.6 Es bleiben nur die Amplituden f 1

2
−1
2 , 12

−1
2

und f 1
2
−1
2 ,−1

2
1
2
(und ihre Part-

ner mit gespiegelter Helizität) übrig. Die zugehörigen Funktionen d1 sind
proportional zu (1+ cosΘ) und (1− cosΘ). Die Winkelverteilung des Wir-
kungsquerschnitts ist also proportional zu (1+ cos2Θ).

2.7 Aus (2.281) folgt

|↑↑〉 =
1

2
(|++〉 − |−−〉+ i |+−〉+ i |−+〉) .

Damit gilt

〈+−|T |↑↑〉 ∼
(
f 1

2
−1
2 , 12

−1
2

+ f 1
2
−1
2 ,−1

2
1
2

)
,

woraus



658 Christoph Berger

|T |2 ∼ 1 + cos2Θ + sin2Θ cos(2φ)

berechnet wird.
2.8 Wegen σ =

∫
|f |2dΩ gilt mit |t |max =1 für jede beitragende Helizitätsam-

plitude

σmax =
12π

p2
.

Hierbei wurde noch (2.124) benutzt.
2.9 Eine solche Kurvendiskussion geht am einfachsten mit dem Computer. Ein

Beispiel findet sich im Web.
2.10 Auch hier sollten Sie Ihr Ergebnis mit der Lösung im Web vergleichen.
2.11 Der Beweis gelingt sofort mit

∫
1

x2 + b2
dx =

1

b
arctan

(x
b

)
.

2.12 ε0 wird durch die Drehung nicht geändert. Die Drehmatrix der räumlichen
Komponenten ist durch

Rz(φ)Ry(Θ) =

cosΘ cosφ − sinφ sinΘ cosφ
cosΘ sinφ cosφ sinΘ sinφ
− sinΘ 0 cosΘ


gegeben. Damit wird (2.295) bewiesen.

2.13 Die Summe der Abstände zu den drei Seiten ist für jeden Punkt innerhalb
eines gleichseitigen Dreiecks gleich der Höhe des Dreiecks. Dies entspricht
dem Energiesatz T 1 +T 2 +T 3 =Q. Wir legen ein rechtwinkliges Koordi-
natensystem in den Schnittpunkt der drei Winkelhalbierenden. Dann gilt
y =T 1−Q/3 und x = (T2 − T3)/

√
3 und daher

x2 + y2 =
Q2

9
+ T 2

1 +
1

3
(T 2

2 + T 2
3 − 2T2T3 − 2T1Q) .

In der Klammer ersetzen wir Q durch T 1 +T 2 +T 3 und erhalten

x2 + y2 =
Q2

9
+

1

3

[
(T1 + T2 + T3)2 − 4T1T2

]
.
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Der Ausdruck in der eckigen Klammer verschwindet aber auf der Begren-
zungslinie, wie man aus (2.48) für cosΘ2 =1 sofort abliest. Damit gilt also
x 2 + y2 =Q2/9, das ist ein Kreis mit dem Radius Q/3.

2.14 Aus (2.267) folgt

f−λ3−λ4,−λ1−λ2
(Θ,φ)

=
1

|p|
∑
J

(2J + 1)tJ−λ3−λ4,−λ1−λ2
(
√
s)dJ−λ−µ(Θ)e−i(λ−µ)φ .

Mit (2.317) gilt dann wegen der Paritätserhaltung

tJ−λ3−λ4,−λ1−λ2
= ηgt

J
λ3λ4,λ1λ2

mit

ηg = η1η2η3η4(−1)2J−j(1)−j(2)−j(3)−j(4) .

Dam = J − j (1)− j (2) immer ganzzahlig ist, benutzen wir (−1)m =(−1)−m

zur Herleitung von

ηg = η1η2η3η4(−1)j(1)+j(2)−j(3)−j(4) .

Mit Hilfe von (2.125) und (2.126) wird der Beweis von (2.318) vervollstän-
digt.

2.15 Mit den üblichen Verfahren der linearen Algebra wird

R =
1√
2

(
1 γ
1 −γ

)
mit γ =

√
B/C ermittelt.

2.16 Es handelt sich hier im Prinzip um eine Kurvendiskussion von (2.431). Das
mühsame Integral zur Bestimmung des Mittelwertes der Kurve lässt sich
mit dem Computer sehr einfach lösen. Bitte konsultieren Sie das Web.

2.17 Unitarität und Unimodularität sind fünf Bedingungsgleichungen für die
vier komplexen Elemente der Matrix. Damit beweist man sehr rasch

U =

(
a b
−b∗ a∗

)
mit a a*+ b b*=1.

2.18 Mit Hilfe der Tabelle 2.3 leiten wir u. a.
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∣∣π+p
〉

=
∣∣ 3

2 ; 3
2

〉
∣∣π0p

〉
=
√

2
3

∣∣ 3
2 ; 1

2

〉
−
√

1
3

∣∣ 1
2 ; 1

2

〉
∣∣π0n

〉
=
√

2
3

∣∣ 3
2 ; −1

2

〉
+
√

1
3

∣∣ 1
2 ; −1

2

〉
∣∣π−p〉 =

√
1
3

∣∣ 3
2 ; −1

2

〉
−
√

2
3

∣∣ 1
2 ; −1

2

〉
ab. Da nur die Amplitude T 3/2 beitragen soll, gilt

〈
π+p

∣∣T ∣∣π+p
〉

= a〈
π−p

∣∣T ∣∣π−p〉 =
a

3〈
π0n

∣∣T ∣∣π−p〉 =

√
2a

3〈
π0n

∣∣T ∣∣π0n
〉

=
2a

3

und deshalb z. B. σ(π+ p)/σ(π− p)= 3 (Abb. 2.14).
2.19 Natürlich ist J 3 durch

J3 =

1 0 0
0 0 0
0 0 −1


gegeben. Wegen J+|1;−1〉 =

√
2|1; 0〉 und J+|1; 0〉 =

√
2|1; 1〉 gilt

J+ =

0 1 0
0 0 1
0 0 0

 .

Ganz analog wird

J− =

0 0 0
1 0 0
0 1 0


abgeleitet. Mit J±= J x± iJ y folgt
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Jx =
1√
2

0 1 0
1 0 1
0 1 0


und

Jy =
i√
2

0 −1 0
1 0 −1
0 1 0

 .

2.20 Wir ergänzen (2.531) durch

〈
π+π−

∣∣T |K1〉 =

√
1

3
(T2 − T ∗2 ) +

√
2

3
(T0 − T ∗0 )

〈
π0π0

∣∣T |K1〉 =

√
2

3
(T2 − T ∗2 )−

√
1

3
(T0 − T ∗0 ) .

Die im Text angegebenen Festlegungen über T 2 und T 0 führen dann un-
mittelbar zu (2.532).

2.21 Unter Benutzung der Definitionen (2.468) und (2.469) muss nur der Zu-
sammenhang von ε mit q/p aus Abschn. 2.7.4 benutzt werden.

8.3 Kapitel 3

3.1 Im Web finden Sie ein Programmpaket, mit dessen Hilfe sich Ausdrücke
mit γ-Matrizen leicht behandeln lassen.

3.2 Siehe Aufgabe 3.1.
3.3 Wegen γ2

5 =1 gilt (1+ γ5)(1− γ5)= 0 und (1+ γ5)(1+ γ5)= 2(1+ γ5) usw.
3.4 (3.137) genügt der Differentialgleichung

q2 dα

dq2
=
α2

3π
.

3.5 Die Auswertung von (3.232) ergibt

dσ

dΩ
∼ 1 + cos2Θ

1− cos2Θ
.

Wenn die Masse des Elektrons nicht vernachlässigt werden soll, muss man
(3.233) auswerten. Dies ergibt
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dσ

dΩ
∼ 1 + β2 cos2Θ

1− β2 cos2Θ
+ 2K + 2K2 ,

worin β die Geschwindigkeit des Elektrons ist und K aus

K =
m2

Eω(1− β2 cos2Θ)

berechnet wird. E und ω bezeichnen die Energien von Elektron und Pho-
ton. Für β→ 0 wird die Winkelverteilung also isotrop.

3.6 Mit λ=630 nm (ω=2 eV) ergibt die Auswertung von (3.229) ω′=75,5GeV.
3.7 Wir wählen ein Atommodell mit einem elastisch gebundenen Elektron der

Eigenfrequenz ω0, was unter dem Einfluss einer elektromagnetischen Welle
der Frequenz ω und der Amplitude E 0 zu schwingen beginnt. Die abge-
strahlte Leistung ist im SI-System durch

P̄ =
1

12πε0c3
ω4p2

0

bestimmt, worin das elektrische Dipolmoment p0 bei Vernachlässigung der
Dämpfung durch

p0 =
e2E0

m(ω2 − ω2
0)

gegeben ist. Der Wirkungsquerschnitt ist durch σ = P̄ /I definiert. Nach
Einsetzen der Intensität I = c ε0 E 2

0/2 folgt im Einheitensystem der Teil-
chenphysik

σ =
8πα2

3m2

ω4

(ω2 − ω2
0)2

.

Diese Formel enthält die beiden Grenzfälle der Thomson-Streuung (ω0≈ 0)
und der Rayleigh-Streuung (ω0�ω).

3.8 Die Lebensdauer berechnet sich aus der freien Weglänge zu τ =1/(c σ nγ).
Für σ setzen wir den Thomson-Querschnitt ein. Für die spektrale Vertei-
lung der Anzahldichte der Photonen gilt

dnγ
dω

=
du

dω

1

~ω
,

worin der erste Faktor auf der rechten Seite die spektrale Energiedichte
der Planckschen Formel ist. Nach Integration erhalten wir nγ mit dem nu-



8 Lösungshinweise zu den Übungsaufgaben 663

merischen Ergebnis nγ =20,2T 3 cm−3K−3. Dies ergibt eine Lebensdauer
von 25,5 h.

8.4 Kapitel 4

4.1 Ein Beispiel für die Verwendung von MAPLE findet sich im Web.
4.2 Mit q1 = p und q2 =n sieht man sofort, dass (4.30) die Zustände (2.495)

und (2.496) erzeugt. Ebenso erzeugt (4.22) bis auf eine Phase die Zustände
(2.503) und (2.504).

4.3 Wir gehen von (4.20) aus. Für kleine Θ gilt mit θ=Θ/2

U =

 1 −iθ 0
−iθ 1 0
0 0 1


und U−1 =U * daher

T ′11 = T 1
1 + iθT 2

1 − iθ(T 2
1 + iθT 2

2 ) .

Entsprechende Ausdrücke ergeben sich für T ′22 und T ′33 . Bei Vernachlässi-
gung quadratischer Terme in θ folgt dann T ′ii = T ii .

4.4 Als Alternative zu den Verfahren im Text des Buches benutzen wir eine
Methode, die aus der Atomphysik bekannt ist. Mit F =F 1 +F 2 gilt für
den Erwartungswert des Wechselwirkungsterms cF = 〈F 1 F 1〉

〈F 1F 1〉 =
1

2

(
f2 − 8

3

)
mit f 2 aus (4.13), wobei schon f 2 =4/3 für Triplett und Antitriplett be-
nutzt wurde. Damit folgt cF =1/6 im Oktett.

4.5 Die Wellenfunktion des Σ+ erhalten wir aus (4.93), indem wir das d -Quark
durch ein s-Quark ersetzen. Damit folgt

µΣ+ =
e

2mu

(
8

9
+

1

9

mu

ms

)
.

Das vorhergesagte magnetische Moment ist also etwas kleiner (2,7µK) als
das magnetische Moment des Protons (2,79µK). Gemessen wurden 2,5µK.

4.6 Aus der Wellenfunktion des flavor -Singuletts folgt
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〈η1|M |η1〉 =
1

3
(2mu + 2md + 2ms) .

Im additiven Quarkmodell ist diese Masse identisch mit (2MK +M π)/3.
4.7 Aus der vierten Zeile der Tabelle 4.4 lesen wir – unter Ersetzung der Farben

durch die Quarksorten –

|Λ〉 =
1

2
(|usd〉 − |uds〉+ |dsu〉 − |dus〉)

ab.
4.8 Das ist eine Aufgabe zum Probieren. mu, d =360MeV, ms =510MeV,

b′=3,8 · 107 MeV2 und b=2 · 107 MeV2 gibt gute Resultate für das Baryonen-
Oktett und -Dekuplett sowie die ρ,ω- und Φ-Mesonen, aber schlechte Wer-
te für die K - und K*-Mesonen.

4.9 Für das Φ-Meson erhalten wir |RS(0)|= 0,24GeV3/2. Die Auswertung von
J/ψ und Υ zeigt dass |RS(0)|2/M2

V sich nur um wenige Prozent ändert.
4.10 Zunächst stellt man die (4.192) entsprechenden Formeln für die η- und

η′-Mesonen unter Berücksichtigung eines Mischungswinkels auf. Als Zer-
fallskonstante wird immer f π eingesetzt. Um vom Mischungswinkel unab-
hängig zu werden, wird dann

Γ η
′

γγ

m3
η′

=
3Γπ

0

γγ

m3
π0

−
Γ ηγγ
m3
η

bewiesen. So kann z. B. Γ η
′

γγ berechnet werden. Die Auswertung zeigt, dass
die Vorhersage (Γ η

′

γγ = 5,7 keV) nur zu ca. 30% erfüllt wird .
4.11 Die Integration über (2.277) ergibt keinen Unterschied in den Formeln für

die Zerfallsbreite.
4.12 Im Oszillatorpotential gilt im Grundzustand E =3ω/2. Aus dem Spek-

trum haben wir für das Charmonium ω=315MeV abgelesen. Da die poten-
tielle und kinetische Energie imMittel gleich groß sind, gilt 3ω/2=2(mc γ−mc),
wobei in der Klammer rechts der Ausdruck für die relativistische kineti-
sche Energie steht. Mit β2 =1− 1/γ2 bekommen wir β2 =0,25. Die gleiche
Rechnung gibt im Fall des Bottomoniums β2 =0,12.

4.13 Aus (4.179) entnehmen wir |Qb| = 1/3. Aus (4.197) bestimmen wir mit
αs =0,196 eine hadronische Zerfallsbreite von 57 keV!

4.14 Die Auswertung der zu (4.219) analogen Formel ergibt Mηb = MΥ −
3,3 MeV.
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8.5 Kapitel 5

5.1 Als Beispiel nehmen wir blaue u-Quarks. Es gibt die Prozesse uB →
uGgBḠ, uB → uRgBR̄ und uB → uBgBB̄ . Die Amplituden der ersten
beiden haben das Gewicht 1 wegen der Wellenfunktionen (4.26), während
die dritte Reaktion über die Wellenfunktion (4.29) einen Wichtungsfaktor
2/
√

6 erhält. Diese Faktoren müssen quadriert und addiert werden. Nach
Multiplikation mit dem üblichen Faktor 1/2 erhält man cF =4/3.

5.2 Die Energien werden gemäß E 1 >E 2 >E 3 angeordnet. Dann gilt

∑
|pin| = |E1 cosΘ1|+ |E2 cosΘ2|+ |E3 cosΘ3| .

Die rechte Seite ist aber ≥ |E 1 cosΘ1| + |E 2 cosΘ2 +E 3 cosΘ3| und wegen
der Impulserhaltung ≥ 2|E 1 cosΘ1|. Im Maximum (cosΘ1 =1) gilt das
Gleichheitszeichen. Damit ist der Beweis vollständig.

5.3 Beim isotropen Zerfall eines System in Teilchen gleicher Masse sind alle
Impulse gleich groß. Damit wird T proportional zu

∫
| cosΘ|d cosΘ Dieses

Integral hat den Wert 1/2.
5.4 Die Experimente wurden alle an ruhenden Protonen durchgeführt. Es gilt

q2 =−2E E ′(1− cosΘ) also

EE′ =
−q2

1− cosΘ
= a

und

E − E′ =
−q2

2M
= b .

Die Auflösung nach E ′ lautet

E′ = − b
2

+

√
b2

4
+ a .

Damit erhalten wir E =1,022GeV, E ′=0,489GeV fürΘ=90◦ und E =11,732GeV,
E ′=11,199GeV für Θ=5◦.

5.5 Es gilt

ρ(r) =
1

2a3
e−ar .

Beweis durch Einsetzen in (5.40).
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5.6 Wir legen die z -Achse des Koordinatensystems in die Richtung des einlau-
fenden Protons. Mit x =−q2/(2 q ·P) und y = q ·P/(e ·P) folgt

x =
2EE′(1 + cosΘ)

4EpE − 2EpE′(1− cosΘ)

und

y = 1− E′

E

1− cosΘ

2
.

5.7 Wir bleiben im HERA-System. Mit den Ergebnissen der letzten Aufgabe
gilt

∂q2

∂ cosΘ
= −2EE′

∂q2

∂E′
= −2E(1 + cosΘ)

∂y

∂ cosΘ
= +

E′

2E
∂y

∂E′
= − 1

2E
(1− cosΘ) .

Damit gilt

dq2dy

dE′dΩ
=
E′

π

und mit q2 =−x y s

dq2dx

dE′dΩ
=
E′x

πy
.

Der Beweis für ruhende Protonen ist noch einfacher.
5.8 Die Auswertung von (5.152) ergibt einen Wirkungsquerschnitt von 2365,

1568 und 2360 pb für die Produktion von π0-, η- und η′-Mesonen. Darin
kommt zum Ausdruck, dass Γ γ γ für diese Mesonen ungefähr proportional
zu M 3 ist.

8.6 Kapitel 6

6.1 Die Streuamplitude (6.10) wird in der Konvention der Kernphysik zu
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f =
1√
2π
GF
√
s .

Da keine Winkelabhängigkeit vorliegt, entspricht dies dem Term mit J =0
in (2.267)

f =
2√
s
t0−1

2
−1
2 ,−1

2
−1
2

.

Die Amplitude ist reell, der Realteil von t0 kann maximal den Wert 1/2
erreichen. Das ergibt smax =

√
2π/GF.

6.2 Hier hilft nur, die Amplitude (6.25) mit den im Text angegebenen Werten
der kinematischen Variablen auszurechnen.

6.3 Das τ kann hadronisch in die Kanäle ud̄, us̄ zerfallen. Die leptonischen
Zerfallskanäle sind e+ νe und µ+ νµ. Bei Vernachlässigung von Massenef-
fekten gilt Γ h/Γ e +µ=3/2, da bei den hadronischen Zerfällen die Farben
gezählt werden müssen und cos2ΘC +sin2ΘC =1 gilt.

6.4 Mit p→ 0 wird aus (3.66)

ur =
√

2m

(
χr
0

)
,

und analog für ur′ . Damit gilt j0
V = 2mχ†r′χr, j

i
V =0 bzw. j 0A =0, jiA =

2mχ†r′σ
iχr,

6.5 Wir bezeichnen mit Tλdλuλeλν̄ die Amplitude mit bestimmten Helizitäten
bzw. Spinprojektionen. Ohne Vernachlässigung von m gilt

T 1
2

1
2
−1
2

1
2

= −8
GF√

2
c1
√
mumdω cos(Θ/2)(

√
E +m+

√
E −m)

T 1
2

1
2

1
2

1
2

= 8
GF√

2
c1
√
mumdω sin(Θ/2)(

√
E +m−

√
E −m)

T 1
2
−1
2
−1
2

1
2

= 8
GF√

2
c1
√
mumdω sin(Θ/2)(

√
E +m+

√
E −m)

T 1
2
−1
2

1
2

1
2

= 8
GF√

2
c1
√
mumdω cos(Θ/2)(

√
E +m−

√
E −m) .

Alle anderen Amplituden verschwinden. Die Summe der Quadrate dieser
Amplituden ergibt das gleiche Resultat wie im masselosen Fall.

6.6 MAPLE (oder ein anderes algebraisches Programm) erspart Ihnen das
Nachschlagen in Integraltabellen zur Verifizierung von
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Γ = 0, 48
G2

Fc
2
1∆

5

15π3
.

6.7 Aus den Amplituden der vorletzten Aufgabe berechnet man unmittelbar
die Wahrscheinlichkeiten P(eL) bzw. P(eR) und

P (eL)− P (eR)

P (eL) + P (eR)
= βe .

6.8 In der Nomenklatur der Aufgabe 6.5 gilt für den Zerfall t→ b+W

T−1
2
−1
2 0 = g

√
mtEb

EW + |pW |
MW

cos(Θ/2)

T−1
2
−1
2 1 = g

√
mtEb

√
2 sin(Θ/2)

T−1
2
−1
2 0 = −g

√
mtEb

EW + |pW |
MW

sin(Θ/2)

T 1
2
−1
2 1 = g

√
mtEb

√
2 cos(Θ/2)

Hierbei wurde mb =0 benutzt. Alle anderen Amplituden verschwinden.
Damit wird (6.92) auf die übliche Art berechnet.

6.9 Zum Beweis muss

Tfi =
g2

2
ūR(k) 6ε∗0(p′)

6q
q2
6ε∗0(k′)uL(p)

ausgewertet werden.

8.7 Kapitel 7

7.1 Das Integral von (7.36) ergibt

σuu =
4π

3s
α2NCG1 .

Damit folgt R=3G1. Eine graphische Auswertung findet sich im Web.
7.2 Hier sollten Sie die graphische Auswertung im Web mit Ihrem Resultat

vergleichen.
7.3 Die Zahl der linkshändigen τ -Leptonen ist proportional zur Summe der

Quadrate der ersten und dritten Zeile der Tabelle 7.1. Entsprechend wird
die Zahl der rechtshändigen τ -Leptonen aus der zweiten und vierten Zeile
bestimmt. Auf der Z 0-Resonanz kann der Beitrag des Photon-Austausches
vernachlässigt werden. Damit gilt
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PL =
c4L − c4R

(c2L + c2R)2
.

7.4 Die numerische Integration erfolgt am besten mit dem sog. Monte-Carlo-
Verfahren. Eine MAPLE-Routine findet sich im Web. Bei Verwendung der
Partondichten (5.102) erhalten wir Lu d(0,1)≈ 1.

7.5 Die Antwort ist in (7.68) enthalten. Mit mu,md,mc =0 folgt bei Vernach-
lässigung des Cabibbo-Winkels

ΓW
ud̄

ΓW
cb̄

=
1

2

(
1− m2

b

M2
W

)(
2 +

m2
b

M2
W

)
|Vcb|2 ≈ |Vcb|2 .

7.6 Beweis durch Einsetzen von E =E 1 +E 2 und pL =E 1−E 2 in (7.95) unter
Benutzung von z i =E i/Ep.

7.7 Mit σ≈ 50 mb und n ≈ 30 ergibt sich nh≈ 1020. Hierbei wurde eine effekti-
ve Laufzeit von 107 s angenommen. Im Vorwärtsbereich des Detektors also
zwischen η′=2.5 und η′=2.0 sind das immer noch 1019 Teilchen. Da die
innersten Schichten des Detektors nur 5 cm von der Strahlachse entfernt
liegen, ergibt sich hier ein Fluss von 0,3 · 1019 Teilchen cm−2a−1.

7.8 Die Auswertung der Feynman-Regeln ergibt T = g MW für den Zerfall
in transversal polarisierte W -Bosonen. Der Rest der Aufgabe wird dann
wieder auf die übliche Weise erledigt.

7.9 Im Text wurde erläutert, dass am LHC (7TeV) der Wirkungsquerschnitt
der tt̄-Produktion etwa 180 pb beträgt, während Higgs-Bosonen mit ca.
15 pb erzeugt werden. Aus Abb. 7.24 lesen wir einen Wirkungsquerschnitt
der Higgs-Produktion von etwa 30 pb ab. Da beide Teilchen dominant in
b-Quarks zerfallen, ist das Verhältnis der Anzahl der erzeugten b-jets etwa
15.

7.10 Es wird jeweils nur die führende Ordnung in λmitgenommen, alsoV u d =1−λ2/2,
V u s =λ, V u b =Aλ3(ρ− iη). Die letzte Gleichung wird mit Hilfe der Iden-
titäten cos δ13 = ρ/

√
η2 + ρ2 und sin δ13 = η/

√
η2 + ρ2 abgeleitet. Die

weiteren Matrixelemente werden dann in analoger Weise bestimmt.
7.11 Zeichnen Sie eine Strecke C B der Länge 1, die das Produkt |V c b V c d|

repräsentiert. Dann wird ein Kreis um C mit dem Radius 0,368 (entspre-
chend |V u b V u d| und ein Kreis um B mit dem Radius 0,935 (entsprechend
|V t b V t d|) geschlagen. Im Schnittpunkt liegt die Dreiecksspitze A.

7.12 Es gilt N ν =2S/W, wobei S die Solarkonstante und W die Wärmetönung
aus (7.209) ist. Dies ergibt einen Fluss von 6, 57 · 1014 m−2s−1.

7.13 In Abb. 7.40 werden die Photonen durch W -Bosonen ersetzt. Die senk-
rechte Linie in der Schleife ist dann z.B ein νµ und die schrägen Linien
gehören zu einem Myon, das an das Z 0 koppelt.
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7.14 Entsprechend dem Z 0-Zerfall gibt es Z̃0 → ẽ−ẽ+, Z̃0 → µ̃−µ̃+, Z̃0 → ũ˜̄u
usw. Beim Zerfall der Sfermionen in das LSP sind dann typische Kanäle
durch µ̃→ µγ̃ gegeben.


